Design Versus Self-Organization

Abstract

The theory of self-organization has sufficiently matured over the last decades, and begins to find practical applications in many fields. Rather than analyzing and comparing underlying definitions of self-organization—the task complicated by a multiplicity of complementary approaches in literature; e.g., recent reviews (Boschetti et al. in Lecture notes in computer science, vol. 3684, pp. 573–580. Springer, Berlin, 2005; Prokopenko et al. in Complexity 15(1):11–28, 2009)—we investigate a possible design space for self-organizing systems, and examine ways to balance design and self-organization in the context of applications.

References

  1. Adamatzky, A. (2008). Emergence of traveling localizations in mutualistic-excitation media. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 333–354). London: Springer. Google Scholar
  2. Adamatzky, A., & Chua, L. (2013). Memristive excitable automata: structural dynamics, phenomenology, localizations and conductive pathways. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (2nd ed.). London: Springer. Google Scholar
  3. Ay, N., Bertschinger, N., Der, R., Güttler, F., & Olbrich, E. (2008). Predictive information and explorative behavior of autonomous robots. The European Physical Journal. B, Condensed Matter Physics, 63, 329–339. MATHCrossRefGoogle Scholar
  4. Ay, N., Bernigau, H., Der, R., & Prokopenko, M. (2012a). Information-driven self-organization: the dynamical system approach to autonomous robot behavior. Theory in Biosciences, 131, 161–179. CrossRefGoogle Scholar
  5. Ay, N., Der, R., & Prokopenko, M. (2012b). Guided self-organization: perception-action loops of embodied systems. Theory in Biosciences, 131, 125–127. CrossRefGoogle Scholar
  6. Baldassarre, G. (2008). Self-organization as phase transition in decentralized groups of robots: a study based on Boltzmann entropy. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 129–149). London: Springer. Google Scholar
  7. Baldassarre, G., Parisi, D., & Nolfi, S. (2007). Measuring coordination as entropy decrease in groups of linked simulated robots. In Y. Bar-Yam (Ed.), Proceedings of the 5th international conference on complex systems (ICCS2004). Google Scholar
  8. Bauer, F., & Lizier, J. T. (2012). Identifying influential spreaders and efficiently estimating infection numbers in epidemic models: a walk counting approach. Europhysics Letters, 99(6), 68007. CrossRefGoogle Scholar
  9. Bialek, W., Nemenman, I., & Tishby, N. (2001). Complexity through nonextensivity. Physica. A, 302, 89–99. MathSciNetMATHCrossRefGoogle Scholar
  10. Boedecker, J., Obst, O., Lizier, J., Mayer, N., & Asada, M. (2012). Information processing in echo state networks at the edge of chaos. Theory in Biosciences, 131, 205–213. CrossRefGoogle Scholar
  11. Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., & Camazine, S. (1997). Self-organisation in social insects. Trends in Ecology & Evolution, 12(5), 188–193. CrossRefGoogle Scholar
  12. Boschetti, F., & Gray, R. (2008). A Turing test for emergence. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 355–370). London: Springer. Google Scholar
  13. Boschetti, F., Prokopenko, M., Macreadie, I., & Grisogono, A.-M. (2005). Defining and detecting emergence in complex networks. In R. Khosla, R. J. Howlett, & L. C. Jain (Eds.), Lecture notes in computer science: Vol. 3684. Proceedings of the 9th international conference on knowledge-based intelligent information and engineering systems, KES 2005, Part IV, Melbourne, Australia, 14–16 September 2005 (pp. 573–580). Berlin: Springer. CrossRefGoogle Scholar
  14. Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraulaz, G., & Bonabeau, E. (2001). Self-organization in biological systems. Princeton: Princeton University Press. Google Scholar
  15. Capdepuy, P., Polani, D., & Nehaniv, C. L. (2012). Perception-action loops of multiple agents: informational aspects and the impact of coordination. Theory in Biosciences, 131(3), 149–159. CrossRefGoogle Scholar
  16. Casti, J. L. (1991). Chaos, Gödel and truth. In J. L. Casti & A. Karlqvist (Eds.), Beyond belief: randomness, prediction, and explanation in science. Boca Raton: CRC Press. Google Scholar
  17. Cools, S.-B., Gershenson, C., & D’Hooghe, B. (2008). Self-organizing traffic lights: a realistic simulation. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 41–50). London: Springer. CrossRefGoogle Scholar
  18. Cooper, S. B. (2010). Incomputability, emergence and the Turing universe. Theory Decis. Libr. A, 46, 135–153. Google Scholar
  19. Correia, L. (2006). Self-organisation: a case for embodiment. In C. Gershenson & T. Lenaerts (Eds.), Proceedings of the evolution of complexity workshop at artificial life X: the 10th international conference on the simulation and synthesis of living systems (pp. 111–116). Google Scholar
  20. Crutchfield, J. P. (1994). The calculi of emergence: computation, dynamics, and induction. Physica. D, 75, 11–54. MATHCrossRefGoogle Scholar
  21. Crutchfield, J. P., Mitchell, M., & Das, R. (1998). The evolutionary design of collective computation in cellular automata (Technical Report 98-09-080). Santa Fe Institute Working Paper, available at http://www.santafe.edu/projects/evca/Papers/EvDesign.html.
  22. Czap, H., Unland, R., Branki, C., & Tianfield, H. (2005). Frontiers in artificial intelligence and applications: Vol. 135. Self-organization and autonomic informatics (I). Amsterdam: IOS Press. Google Scholar
  23. De Wolf, T., & Holvoet, T. (2005). Emergence versus self-organisation: different concepts but promising when combined. In S. Brueckner, G. D. M. Serugendo, A. Karageorgos, & R. Nagpal (Eds.), Engineering self-organising systems (pp. 1–15). Berlin: Springer. CrossRefGoogle Scholar
  24. Der, R., Steinmetz, U., & Pasemann, F. (1999). Homeokinesis—a new principle to back up evolution with learning. In Concurrent systems engineering series (Vol. 55, pp. 43–47). Google Scholar
  25. Gershenson, C. (2012). Guiding the self-organization of random Boolean networks. Theory in Biosciences, 131(3), 181–191. CrossRefGoogle Scholar
  26. Haken, H. (1983a). Advanced synergetics: instability hierarchies of self-organizing systems and devices. Berlin: Springer. MATHGoogle Scholar
  27. Haken, H. (1983b). Synergetics, an introduction: nonequilibrium phase transitions and self-organization in physics, chemistry, and biology. New York: Springer. 3rd rev. enl. ed. MATHGoogle Scholar
  28. Haken, H. (1988). Information and self-organization: a macroscopic approach to complex systems. Berlin: Springer. MATHGoogle Scholar
  29. Heylighen, F. (2000). Self-organization. In F. Heylighen, C. Joslyn, & V. Turchin (Eds.), Principia Cybernetica web. Brussels: Principia Cybernetica. Available at http://pespmc1.vub.ac.be/SELFORG.html. Google Scholar
  30. Hofstadter, D. R. (1989). Gödel, Escher, Bach: an eternal golden braid. New York: Vintage Books. Google Scholar
  31. Hogg, T. (2008). Distributed control of microscopic robots in biomedical applications. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 147–174). London: Springer. CrossRefGoogle Scholar
  32. Hoschke, N., Lewis, C. J., Price, D. C., Scott, D. A., Gerasimov, V., & Wang, P. (2008). A self-organizing sensing system for structural health monitoring of aerospace vehicles. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 51–75). London: Springer. CrossRefGoogle Scholar
  33. Hoschke, N., Price, D. C., & Scott, D. A. (2013). Self-organizing sensing of structures: monitoring a space vehicle thermal protection system. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (2nd ed.). London: Springer. Google Scholar
  34. Hubbell, S. P., Johnson, L. K., Stanislav, E., Wilson, B., & Fowler, H. (1980). Foraging by bucket-brigade in leafcutter ants. Biotropica, 12(3), 210–213. CrossRefGoogle Scholar
  35. Jirsa, V. K., Jantzen, K. J., Fuchs, A., & Kelso, J. A. (2002). Spatiotemporal forward solution of the eeg and meg using network modeling. IEEE Transactions on Medical Imaging, 21(5), 493–504. CrossRefGoogle Scholar
  36. Kauffman, S. A. (2000). Investigations. Oxford: Oxford University Press. Google Scholar
  37. Klyubin, A. S., Polani, D., & Nehaniv, C. L. (2004). Organization of the information flow in the perception-action loop of evolved agents. In Proceedings of 2004 NASA/DoD conference on evolvable hardware (pp. 177–180). Los Alamitos: IEEE Computer Society. CrossRefGoogle Scholar
  38. Klyubin, A. S., Polani, D., & Nehaniv, C. L. (2005). All else being equal be empowered. In M. S. Capcarrère, A. A. Freitas, P. J. Bentley, C. G. Johnson, & J. Timmis (Eds.), Lecture notes of computer science: Vol. 3630. Proceedings of the 8th European conference on advances in artificial life, ECAL 2005, Canterbury, UK, 5–9 September 2005 (pp. 744–753). Berlin: Springer. Google Scholar
  39. Klyubin, A., Polani, D., & Nehaniv, C. (2007). Representations of space and time in the maximization of information flow in the perception-action loop. Neural Computation, 19(9), 2387–2432. MathSciNetMATHCrossRefGoogle Scholar
  40. Kuramoto, Y. (1984). Chemical oscillations, waves, and turbulence. Berlin: Springer. MATHCrossRefGoogle Scholar
  41. Langton, C. (1991). Computation at the edge of chaos: phase transitions and emergent computation. In S. Forest (Ed.), Emergent computation. Cambridge: MIT Press. Google Scholar
  42. Lee, Y. C., & Zomaya, A. Y. (2008). Immune system support for scheduling. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 247–270). London: Springer. CrossRefGoogle Scholar
  43. Liljenström, H., & Svedin, U. (2005). System features, dynamics, and resilience—some introductory remarks. In H. Liljenström & U. Svedin (Eds.), MICRO-MESO-MACRO: addressing complex systems couplings (pp. 1–16). Singapore: World Scientific. CrossRefGoogle Scholar
  44. Lizier, J. T., Prokopenko, M., Tanev, I., & Zomaya, A. Y. (2008a). Emergence of glider-like structures in a modular robotic system. In S. Bullock, J. Noble, R. Watson, & M. A. Bedau (Eds.), Proceedings of the eleventh international conference on the simulation and synthesis of living systems (ALife XI), Winchester, UK (pp. 366–373). Cambridge: MIT Press. Google Scholar
  45. Lizier, J. T., Prokopenko, M., & Zomaya, A. Y. (2008b). The information dynamics of phase transitions in random Boolean networks. In S. Bullock, J. Noble, R. Watson, & M. A. Bedau (Eds.), Proceedings of the eleventh international conference on the simulation and synthesis of living systems (ALife XI), Winchester, UK (pp. 374–381). Cambridge: MIT Press. Google Scholar
  46. Lizier, J. T., Prokopenko, M., & Zomaya, A. Y. (2008c). Local information transfer as a spatiotemporal filter for complex systems. Physical Review E, 77(2), 026110. MathSciNetCrossRefGoogle Scholar
  47. Lizier, J. T., Prokopenko, M., & Cornforth, D. J. (2009). The information dynamics of cascading failures in energy networks. In Proceedings of the European conference on complex systems (ECCS), Warwick, UK (p. 54). ISBN 978-0-9554123-1-8. Google Scholar
  48. Lizier, J. T., Prokopenko, M., & Zomaya, A. Y. (2010). Information modification and particle collisions in distributed computation. Chaos, 20(3), 037109. MathSciNetCrossRefGoogle Scholar
  49. Lizier, J. T., Heinzle, J., Horstmann, A., Haynes, J.-D., & Prokopenko, M. (2011a). Multivariate information-theoretic measures reveal directed information structure and task relevant changes in fMRI connectivity. Journal of Computational Neuroscience, 30(1), 85–107. MathSciNetCrossRefGoogle Scholar
  50. Lizier, J. T., Pritam, S., & Prokopenko, M. (2011b). Information dynamics in small-world Boolean networks. Artificial Life, 17(4), 293–314. CrossRefGoogle Scholar
  51. Lizier, J. T., Atay, F. M., & Jost, J. (2012a). Information storage, loop motifs, and clustered structure in complex networks. Physical Review E, 86(2), 026110. CrossRefGoogle Scholar
  52. Lizier, J. T., Prokopenko, M., & Zomaya, A. Y. (2012b). Coherent information structure in complex computation. Theory in Biosciences, 131(3), 193–203. CrossRefGoogle Scholar
  53. Lizier, J. T., Prokopenko, M., & Zomaya, A. Y. (2012c). Local measures of information storage in complex distributed computation. Information Sciences, 208, 39–54. CrossRefGoogle Scholar
  54. Macias, N. J., & Durbeck, L. J. K. (2008). Self-organizing digital systems. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 177–215). London: Springer. CrossRefGoogle Scholar
  55. Macias, N. J., & Durbeck, L. J. K. (2013). Self-organizing computing systems: songline processors. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (2nd ed.). London: Springer. Google Scholar
  56. Martius, G., & Herrmann, J. M. (2012). Variants of guided self-organization for robot control. Theory in Biosciences, 131(3), 129–137. CrossRefGoogle Scholar
  57. Mathews, G., & Durrant-Whyte, H. (2013). Decentralised decision making for ad-hoc multi-agent systems. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (2nd ed.). London: Springer. Google Scholar
  58. Mathews, G., Durrant-Whyte, H., & Prokopenko, M. (2008). Decentralized decision making for multi-agent systems. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 77–103). London: Springer. CrossRefGoogle Scholar
  59. Miller, J. F., Job, D., & Vassilev, V. K. (2000). Principles in the evolutionary design of digital circuits—Part I. Genetic Programming and Evolvable Machines, 1(1), 8–35. CrossRefGoogle Scholar
  60. Mitchell, M., Hraber, P. T., & Crutchfield, J. P. (1993). Revisiting the edge of chaos: evolving cellular automata to perform computations. Complex Systems, 7, 89–139. MATHGoogle Scholar
  61. Pikovsky, A., Rosenblum, M., & Kurths, J. (2001). Synchronization: a universal concept in nonlinear science. Cambridge: Cambridge University Press. MATHCrossRefGoogle Scholar
  62. Piraveenan, M., Prokopenko, M., & Zomaya, A. Y. (2009a). Assortativeness and information in scale-free networks. The European Physical Journal. B, Condensed Matter Physics, 67, 291–300. CrossRefGoogle Scholar
  63. Piraveenan, M., Prokopenko, M., & Zomaya, A. Y. (2009b). Assortativity and growth of Internet. The European Physical Journal. B, Condensed Matter Physics, 70, 275–285. CrossRefGoogle Scholar
  64. Piraveenan, M., Prokopenko, M., & Hossain, L. (2012). Percolation centrality: quantifying graph-theoretic impact of nodes during percolation in networks. PLoS ONE, 8(1), e53095. doi:10.1371/journal.pone.0053095 CrossRefGoogle Scholar
  65. Polani, D. (2003). Measuring self-organization via observers. In W. Banzhaf, T. Christaller, P. Dittrich, J. T. Kim, & J. Ziegler (Eds.), Advances in artificial life—proceedings of the 7th European conference on artificial life (ECAL), Dortmund (pp. 667–675). Heidelberg: Springer. CrossRefGoogle Scholar
  66. Polani, D. (2008). Foundations and formalizations of self-organization. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 19–37). London: Springer. CrossRefGoogle Scholar
  67. Polani, D., Sporns, O., & Lungarella, M. (2007). How information and embodiment shape intelligent information processing. In M. Lungarella, F. Iida, J. Bongard, & R. Pfeifer (Eds.), Lecture notes in computer science: Vol. 4850. Proceedings of the 50th anniversary summit of artificial intelligence, New York (pp. 99–111). Berlin: Springer. Google Scholar
  68. Prigogine, I. (1980). From being to becoming: time and complexity in the physical sciences. San Francisco: Freeman. Google Scholar
  69. Prokopenko, M. (2009). Guided self-organization. HFSP Journal, 3(5), 287–289. CrossRefGoogle Scholar
  70. Prokopenko, M., Piraveenan, M., & Wang, P. (2005a). On convergence of dynamic cluster formation in multi-agent networks. In M. S. Capcarrère, A. A. Freitas, P. J. Bentley, C. G. Johnson, & J. Timmis (Eds.), Lecture notes in computer science: Vol. 3630. Proceedings of the 8th European conference on advances in artificial life, ECAL 2005, Canterbury, UK, 5–9 September 2005 (pp. 884–894). Berlin: Springer. Google Scholar
  71. Prokopenko, M., Wang, P., Foreman, M., Valencia, P., Price, D. C., & Poulton, G. T. (2005b). On connectivity of reconfigurable impact networks in ageless aerospace vehicles. Robotics and Autonomous Systems, 53(1), 36–58. CrossRefGoogle Scholar
  72. Prokopenko, M., Wang, P., & Price, D. C. (2005c). Complexity metrics for self-monitoring impact sensing networks. In J. Lohn, D. Gwaltney, G. Hornby, R. Zebulum, D. Keymeulen, & A. Stoica (Eds.), Proceedings of 2005 NASA/DoD conference on evolvable hardware (EH-05), Washington DC, USA, 29 June–1 July 2005 (pp. 239–246). Los Alamitos: IEEE Computer Society. CrossRefGoogle Scholar
  73. Prokopenko, M., Wang, P., Price, D. C., Valencia, P., Foreman, M., & Farmer, A. J. (2005d). Self-organizing hierarchies in sensor and communication networks. Artificial Life, 11(4), 407–426. Special Issue on Dynamic Hierarchies. CrossRefGoogle Scholar
  74. Prokopenko, M., Gerasimov, V., & Tanev, I. (2006a). Evolving spatiotemporal coordination in a modular robotic system. In S. Nolfi, G. Baldassarre, R. Calabretta, J. C. T. Hallam, D. Marocco, J.-A. Meyer, O. Miglino, & D. Parisi (Eds.), Lecture notes in computer science: Vol. 4095. From animals to animats 9: 9th international conference on the simulation of adaptive behavior (SAB 2006), Rome, Italy, 25–29 September 2006 (pp. 558–569). CrossRefGoogle Scholar
  75. Prokopenko, M., Gerasimov, V., & Tanev, I. (2006b). Measuring spatiotemporal coordination in a modular robotic system. In L. Rocha, L. Yaeger, M. Bedau, D. Floreano, R. Goldstone, & A. Vespignani (Eds.), Artificial life X: proceedings of the 10th international conference on the simulation and synthesis of living systems (pp. 185–191). Bloomington: MIT Press. Google Scholar
  76. Prokopenko, M., Poulton, G. T., Price, D. C., Wang, P., Valencia, P., Hoschke, N., Farmer, A. J., Hedley, M., Lewis, C., & Scott, D. A. (2006c). Self-organising impact sensing networks in robust aerospace vehicles. In J. Fulcher (Ed.), Advances in applied artificial intelligence (pp. 186–233). Hershey: Idea Group. CrossRefGoogle Scholar
  77. Prokopenko, M., Boschetti, F., & Ryan, A. J. (2009). An information-theoretic primer on complexity, self-organization, and emergence. Complexity, 15(1), 11–28. MathSciNetCrossRefGoogle Scholar
  78. Prokopenko, M., Lizier, J. T., Obst, O., & Wang, X. R. (2011). Relating Fisher information to order parameters. Physical Review E, 84(4), 041116. CrossRefGoogle Scholar
  79. Sahin, E., & Spears, W. M. (2004). Revised selected papers. In Lecture notes in computer science: Vol. 3342. Proceedings of SAB-2004 international workshop on swarm robotics, Santa Monica, CA, USA, 17 July 2004. Google Scholar
  80. Scaruffi, P. (2003). Thinking about thought: a primer on the new science of mind, towards a unified understanding of mind, life and matter. San Jose: Writers Club Press. Google Scholar
  81. Schlegel, T., & Kowalczyk, R. (2008). Self-organizing nomadic services in grids. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 217–245). London: Springer. CrossRefGoogle Scholar
  82. Schreiber, T. (2000). Measuring information transfer. Physical Review Letters, 85(2), 461–464. CrossRefGoogle Scholar
  83. Shalizi, C. (2001). Causal architecture, complexity and self-organization in time series and cellular automata. PhD thesis, University of Michigan. Available at http://www.cscs.umich.edu/~crshalizi/thesis/.
  84. Shalizi, C. R., Shalizi, K. L., & Haslinger, R. (2004). Quantifying self-organization with optimal predictors. Physical Review Letters, 93(11), 118701-1-4. CrossRefGoogle Scholar
  85. Tanev, I. (2008). Learning mutation strategies for evolution and adaptation of a simulated snakebot. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 105–127). London: Springer. CrossRefGoogle Scholar
  86. Tanev, I., Ray, T., & Buller, A. (2005). Automated evolutionary design, robustness, and adaptation of sidewinding locomotion of a simulated snake-like robot. IEEE Transactions on Robotics, 21, 632–645. CrossRefGoogle Scholar
  87. Tarakanov, A. O. (2008). Formal immune networks: self-organization and real-world applications. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 271–290). London: Springer. CrossRefGoogle Scholar
  88. Tarakanov, A. O., & Borisova, A. V. (2013). Formal immune networks: self-organization and real-world applications. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (2nd ed.). London: Springer. Google Scholar
  89. Vande Moere, A. (2008). A model for self-organizing data visualization using decentralized multi-agent systems. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 291–324). London: Springer. CrossRefGoogle Scholar
  90. Volman, M. J. M. (1997). Rhythmic coordination dynamics in children with and without a developmental coordination disorder. PhD dissertation, University of Groningen, available at http://irs.ub.rug.nl/ppn/163776687.
  91. Wagner, A. (2005). Robustness and evolvability in living systems. Princeton: Princeton University Press. Google Scholar
  92. Wang, X. R., Lizier, J. T., & Prokopenko, M. (2010). A Fisher information study of phase transitions in random Boolean networks. In H. Fellermann, M. Dörr, M. M. Hanczyc, L. L. Laursen, S. Maurer, D. Merkle, P.-A. Monnard, K. Stoy, & S. Rasmussen (Eds.), Proceedings of the 12th international conference on the synthesis and simulation of living systems (Alife XII), Odense, Denmark (pp. 305–312). Cambridge: MIT Press. Google Scholar
  93. Wang, X. R., Lizier, J. T., & Prokopenko, M. (2011). Fisher information at the edge of chaos in random Boolean networks. Artificial Life, 17(4), 315–329. CrossRefGoogle Scholar
  94. Wang, X. R., Miller, J. M., Lizier, J. T., Prokopenko, M., & Rossi, L. F. (2012). Quantifying and tracing information cascades in swarms. PLoS ONE, 7(7), e40084. CrossRefGoogle Scholar
  95. Woese, C. R. (2004). A new biology for a new century. Microbiology and Molecular Biology Reviews, 68(2), 173–186. CrossRefGoogle Scholar
  96. Wolfram, S. (1984). Universality and complexity in cellular automata. Physica D, 10. Google Scholar
  97. Wuensche, A. (1999). Classifying cellular automata automatically: finding gliders, filtering, and relating space-time patterns, attractor basins, and the z parameter. Complexity, 4(3), 47–66. MathSciNetCrossRefGoogle Scholar
  98. Zambonelli, F., & Rana, O. F. (2005). Self-organization in distributed systems engineering. Special Issue of IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 35(3). Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.ICT CentreCommonwealth Scientific and Industrial Research Organisation (CSIRO)EppingAustralia

Personalised recommendations