Advertisement

Equilibrium

  • Dan B. Marghitu
  • Mihai Dupac
  • Nels Madsen
Chapter

Abstract

A a body is in equilibrium when it is stationary or in steady translation relative to an inertial reference frame. The following conditions are satisfied when a body, acted upon by a system of forces and moments, is in equilibrium

Keywords

Equilibrium Equation Roller Support Inertial Reference Frame Support Reaction Plane Truss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P. Appell, Traité de mécanique rationnelle (Gauthier-Villars, Paris, 1955)Google Scholar
  2. 2.
    M. Atanasiu, Mechanics (EDP, Bucharest, 1973)Google Scholar
  3. 3.
    H. Baruh, Analytical Dynamics (WCB/McGraw-Hill, Boston, 1999)Google Scholar
  4. 4.
    G. Baumann, Mathematica for Theoretical Physics: Classical Mechanics and Nonlinear Dynamics (Springer, New York, 2005)Google Scholar
  5. 5.
    G. Baumann, Mathematica for Theoretical Physics: Electrodynamics, Quantum Mechanics, General Relativity and Fractals (Springer, New York, 2005)Google Scholar
  6. 6.
    F.P. Beer, E.R. Johnston, Vector Mechanics for Engineers: Statics and Dynamics 5/e (McGraw-Hill, New York, 1988)Google Scholar
  7. 7.
    F.P. Beer, E.R. Johnston, D.F. Mazurek, Vector Mechanics for Engineers: Statics, 10/e(McGraw-Hill, New York, 2012)Google Scholar
  8. 8.
    A.M. Bedford, W. Fowler, K.M. Liechti, Statics and Mechanics of Materials (Prentice Hall, Upper Saddle River, 2002)Google Scholar
  9. 9.
    A.M. Bedford, W. Fowler, Engineering Mechanics: Statics, 5/e (Prentice Hall, Upper Saddle River, 2007)Google Scholar
  10. 10.
    A.P. Boresi, R.J. Schmidt, Engineering Mechanics: Statics (PWS Publishing Company, Boston, 2000)Google Scholar
  11. 11.
    M.I. Buculei, Mechanics (University of Craiova Press, Craiova, 1974)Google Scholar
  12. 12.
    M.I. Buculei, D. Bagnaru, G. Nanu, D.B. Marghitu, Analysis of Mechanisms with Bars (Scrisul romanesc, Craiova, 1986)Google Scholar
  13. 13.
    I. Stroe et al., Analytical Mechanics Problems (University Politehnica of Bucharest, Romania, 1997)Google Scholar
  14. 14.
    V. Ceausu, N. Enescu, F. Ceausu, Mechanics Problems (Printech, Bucharest, 1999)Google Scholar
  15. 15.
    S.J. Chapman, MATLAB Programming for Engineers (Thomson Learning, Pacific Grove, CA, 2002)Google Scholar
  16. 16.
    S. Attaway, MATLAB: A Practical Introduction to Programming and Problem Solving (Butterworth-Heinemann, Elsevier, Amsterdam, 2012)Google Scholar
  17. 17.
    D.M. Etter, D.C. Kuncicky, Introduction to MATLAB for Engineers and Scientists (Prentice Hall, Upper Saddle River, 1996)Google Scholar
  18. 18.
    C. Iacob, Theoretical Mechanics (EDP, Bucharest, 1980)Google Scholar
  19. 19.
    J.H. Ginsberg, Advanced Engineering Dynamics (Cambridge University Press, Cambridge, 1995)Google Scholar
  20. 20.
    D.T. Greenwood, Principles of Dynamics (Prentice-Hall, Englewood Cliffs, 1998)Google Scholar
  21. 21.
    L.E. Goodman, W.H. Warner, Statics (Dover Publications, New York, 2001)Google Scholar
  22. 22.
    R.C. Hibbeler, Engineering Mechanics: Statics and Dynamics 13/e (Prentice-Hall, Upper Saddle River, 2013)Google Scholar
  23. 23.
    T.R. Kane, Analytical Elements of Mechanics, vol. 1 (Academic Press, New York, 1959)Google Scholar
  24. 24.
    T.R. Kane, Analytical Elements of Mechanics, vol. 2 (Academic Press, New York, 1961)Google Scholar
  25. 25.
    T.R. Kane, P.W. Likins, D.A. Levinson, Spacecraft Dynamics (McGraw-Hill, New York, 1983)Google Scholar
  26. 26.
    T.R. Kane, D.A. Levinson, Dynamics (McGraw-Hill, New York, 1985)Google Scholar
  27. 27.
    R. Maeder, Programming in Mathematica (Addison-Wesley, Redwood City, 1990)Google Scholar
  28. 28.
    N.H. Madsen, Statics and Dynamics, class notes, http://www.eng.auburn.edu/users/nmadsen/
  29. 29.
    D.B. Marghitu, Mechanical Engineer’s Handbook (Academic Press, San Diego, 2001)Google Scholar
  30. 30.
    D.B. Marghitu, M.J. Crocker, Analytical Elements of Mechanisms (Cambridge University Press, Cambridge, 2001)Google Scholar
  31. 31.
    D.B. Marghitu, Kinematic Chains and Machine Component Design (Elsevier, Amsterdam, 2005)Google Scholar
  32. 32.
    D.B. Marghitu, Mechanisms and Robots Analysis with MATLAB (Springer, New York, 2009)Google Scholar
  33. 33.
    D.B. Marghitu, M. Dupac, Advanced Dynamics: Analytical and Numerical Calculations with MATLAB (Springer, New York, 2012)Google Scholar
  34. 34.
    D.B. Marghitu, Statics and Dynamics, class notes, http://www.eng.auburn.edu/users/marghitu/
  35. 35.
    D.J. McGill, W.W. King, Engineering Mechanics: Statics and an Introduction to Dynamics (PWS Publishing Company, Boston, 1995)Google Scholar
  36. 36.
    J.L. Meriam, L.G. Kraige, Engineering Mechanics: Statics, 7/e (Wiley, New York, 2011)Google Scholar
  37. 37.
    R.L. Mott, Machine Elements in Mechanical Design (Prentice Hall, Upper Saddle River, 1999)Google Scholar
  38. 38.
    R.L. Norton, Machine Design (Prentice-Hall, Upper Saddle River, 1996)Google Scholar
  39. 39.
    L.A. Pars, A Treatise on Analytical Dynamics (Wiley, New York, 1965)Google Scholar
  40. 40.
    M. Plesha, G. Gray, F. Costanzo, Engineering Mechanics: Statics, 2/e (McGraw-Hill, New York, 2012)Google Scholar
  41. 41.
    M. Radoi, E. Deciu, Mechanics (EDP, Bucharest, 1981)Google Scholar
  42. 42.
    W.F. Riley, L.D. Sturges, Engineering Mechanics: Statics, 2/e (Wiley, New York, 1995)Google Scholar
  43. 43.
    A. Ruina, R. Pratap, Introduction to Statics and Dynamics (Oxford University Press, Oxford, 2002)Google Scholar
  44. 44.
    A. Ripianu, P. Popescu, B. Balan, Technical Mechanics (EDP, Bucharest, 1979)Google Scholar
  45. 45.
    I.H. Shames, Engineering Mechanics Statics, 4/e (Prentice Hall, New Jersey, 1996)Google Scholar
  46. 46.
    S.D. Sheppard, B.H. Tongue, Statics: Analysis and Design of Systems in Equilibrium (Wiley, New York, 2005)Google Scholar
  47. 47.
    D. Smith, Engineering Computation with MATLAB (Pearson Education, Upper Saddle River, 2008)Google Scholar
  48. 48.
    R.W. Soutas-Little, D.J. Inman, Engineering Mechanics: Statics and Dynamics (Prentice-Hall, Upper Saddle River, 1999)Google Scholar
  49. 49.
    R.W. Soutas-Little, D.J. Inman, D. Balint, Engineering Mechanics: Statics (Cengage Learning, Independence, KY, 2007)Google Scholar
  50. 50.
    S. Staicu, Theoretical Mechanics (EDP, Bucharest, 1998)Google Scholar
  51. 51.
    A. Stan, M. Grumazescu, Mechanics Problems (EDP, Bucharest, 1973)Google Scholar
  52. 52.
    J. Sticklen, M.T. Eskil, An Introduction to Technical Problem Solving with MATLAB (Great Lakes Press, Wildwood, 2006)Google Scholar
  53. 53.
    A. Stoenescu, G. Silas, Theoretical Mechanics (ET, Bucharest, 1957)Google Scholar
  54. 54.
    J.H. Jackson, H.G. Wirtz, Schaum’s Outline of Theory and Problems of Statics and Strength of Materials (McGraw-Hill, New York, 1983)Google Scholar
  55. 55.
  56. 56.
    Statics eBook : https://ecourses.ou.edu/
  57. 57.
    R. Voinea, D. Voiculescu, V. Ceausu, Mechanics (EDP, Bucharest, 1983)Google Scholar
  58. 58.
    V. Valcovici, S. Balan, R. Voinea, Theoretical Mechanics (ET, Bucharest, 1959)Google Scholar
  59. 59.
    K.J. Waldron, G.L. Kinzel, Kinematics, Dynamics, and Design of Machinery (Wiley, New York, 1999)Google Scholar
  60. 60.
    H.B. Wilson, L.H. Turcotte, and D. Halpern, Advanced Mathematics and Mechanics Applications Using MATLAB (Chapman & Hall/CRC, Boca Raton, FL, 2003)Google Scholar
  61. 61.
    J.H. Williams Jr, Fundamentals of Applied Dynamics (Wiley, New York, 1996)Google Scholar
  62. 62.
    S. Wolfram, Mathematica (Wolfram Media/Cambridge University Press, Cambridge, 1999)Google Scholar

Copyright information

© Springer London 2013

Authors and Affiliations

  1. 1.Mechanical EngineeringAuburn UniversityAuburnUSA
  2. 2.Talbot Campus, School of Design, Engineering and ComputingBournemouth UniversityPooleUK
  3. 3.Samuel Ginn College of EngineeringAuburn UniversityAuburnUSA

Personalised recommendations