Skip to main content

Fundamentals of Power Electronics

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This chapter gives a description and overview of power electronic technologies including a description of the fundamental systems that are the building blocks of power electronic systems. Technologies that are described include: power semiconductor switching devices, converter circuits that process energy from one DC level to another DC level, converters that produce variable frequency from DC sources, principles of rectifying AC input voltage in uncontrolled DC output voltage and their extension to controlled rectifiers, converters that convert to AC from DC (inverters) or from AC with fixed or variable output frequency (AC controllers, DC–DC–AC converters, matrix converters, or cycloconverters). The chapter also covers control of power converters with focus on pulse width modulation (PWM) control techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kassakian J, Schlecht M, Verghese G (1991) Principles of power electronics. Addison-Wesley, Reading

    Google Scholar 

  2. Batarseh I (2004) Power electronic circuits. Wiley, New York

    Google Scholar 

  3. Mohan N, Undeland T, Robbins W (2003) Power electronics: converters, applications, and design. Wiley, New York

    Google Scholar 

  4. Hart D (2011) Power electronics, 2nd edn. McGraw Hill, New York

    Google Scholar 

  5. Holmes D, Lipo T (2003) Pulse width modulation for power converters. IEEE/Wiley-Interscience, New York

    Book  Google Scholar 

  6. Wu B (2006) High-power converters and AC drives. Wiley, New York

    Book  Google Scholar 

  7. Rossetto L, Spiazzi G, Tenti P (1994) Control techniques for power factor correction converters. In: Proceedings of PEMC, pp 3310–1318

    Google Scholar 

  8. Buso S, Matavelli P (2006) Digital control in power electronics. Morgan & Claypool, San Rafael

    Google Scholar 

  9. Rodriguez J, Dixon J, Espinoza J et al (2005) PWM regenerative rectifiers: state of the art. IEEE Trans Ind Electron 52:5–55

    Article  Google Scholar 

  10. Holtz J (1994) Pulse width modulation for electronic power conversion. Proc IEEE 82:1194–1214

    Article  Google Scholar 

  11. da Silva E, dos Santos E, Jacobina C (2011) Pulsewidth modulation strategies. IEEE Ind Electron Mag 5:37–45

    Article  Google Scholar 

  12. Schönung A, Stemmler H (1964) Static frequency changers with sub-harmonic control in conjunction with reversible variable speed AC drives. Brown Boveri Rev 51:555–577

    Google Scholar 

  13. Bowes S, Mount M (1981) Microprocessor control of PWM inverters. IEEE Proc B:293–305

    Google Scholar 

  14. Depenbrock M (1977) Pulse width control of a 3-phase inverter with non-sinusoidal phase voltages. In: Proceedings of the IEEE international semiconductor power converter conference, ISPCC’77, pp 399–403

    Google Scholar 

  15. Houldsworth J, Grant D (1984) The use of harmonic distortion to increase the output voltage of a three-phase PWM inverter. IEEE Trans Ind Appl IA-20:1224–1228

    Google Scholar 

  16. Kolar JW, Ertl H, Zach FC (1990) Influence of the modulation method on the conduction and switching losses of a PWM converter system. In: Proceedings of the IEEE-IAS’90, pp 502–512

    Google Scholar 

  17. Sun J, Grotstollen H (1996) Optimized space vector modulation and regular-sampled PWM: a reexamination. In: Proceedings of the IEEE-IAS’96, pp 956–963

    Google Scholar 

  18. Blasko V (1996) A hybrid PWM strategy combining modified space vector and triangle comparison methods. In: Proceedings of the IEEE PESC, pp 1872–1878

    Google Scholar 

  19. Hava A, Kerkman R, Lipo T (1998) A high-performance generalized discontinuous PWM algorithm. IEEE Trans Ind Appl 34:1059–1071

    Article  Google Scholar 

  20. Alves A, da Silva E, Lima A, Jacobina C (1998) Pulse width modulator for voltage-type inverters with either constant or pulsed DC link. In: Proceedings of IEEE IAS’98, pp 229–1236

    Google Scholar 

  21. Seixas P (1988) Commande numérique d’une machine synchrone autopilotée. D.Sc. Thesis, L’Institut Nationale Polytechnique de Toulouse, INPT, Toulouse

    Google Scholar 

  22. Holmes D (1996) The significance of zero space vector placement for carrier-based PWM schemes. IEEE Trans Ind App 32:1122–1129

    Article  Google Scholar 

  23. Grotstollen H (1993) Line voltage modulation: a new possibility of PWM for three phase inverters. In: Proceedings of the IEEE IAS’93, pp 567–574

    Google Scholar 

  24. Jacobina C, Lima A, da Silva E, Alves R, Seixas P (2001) Digital scalar pulse-width modulation: a simple approach to introduce non-sinusoidal modulating waveforms. IEEE Trans Power Electron 16:351–359

    Article  Google Scholar 

  25. Oliveira A, da Silva E, Jacobina C (2004) A hybrid PWM strategy for multilevel voltage source inverters. In: Proceedings of the IEEE PESC’2004, pp 4220–4225

    Google Scholar 

  26. Van der Broeck H, Skudelny H, Stanke G (1988) Analysis and realization of a pulse width modulator based on voltage space vector. IEEE Trans Ind Appl 24:142–150

    Article  Google Scholar 

  27. Jacobina C, Lima A, da Silva E (1977) PWM space vector based on digital scalar modulation. In: Proceedings of the IEEE PESC, pp 100–105

    Google Scholar 

  28. Zhou K, Wang D (2002) Relationship between space-vector modulation and three-phase carrier-based PWM: a comprehensive analysis. IEEE Trans Ind Appl 49:186–196

    Google Scholar 

  29. Ledwich G (2001) Current source inverter modulation. IEEE Trans Power Electron 6:618–623

    Article  Google Scholar 

  30. Dahono P, Kataoka T, Sato Y (1997) Dual Relationships between voltage-source and current-source three-phase inverters and its applications. In: Proceedings of the PEDS, pp 559–565

    Google Scholar 

  31. Zmood D, Holmes DG (2001) Improved voltage regulation for current-source inverters. IEEE Trans Ind Appl 37:1028–1036

    Article  Google Scholar 

  32. Espinoza J, Joós G, Guzmán J et al (2001) Selective harmonic elimination and current/voltage control in current/voltage source topologies: a unified approach. IEEE Trans Ind Electron 48:71–81

    Article  Google Scholar 

  33. Zargari N, Geza J (1993), A current-controlled current source type unity power factor PWM rectifier. In: Proceedings of the IEEE IAS’93, pp 793–799

    Google Scholar 

  34. Acha E, Agelidis V, Anaya-Lara O et al (2002) Power electronic control in electrical systems. Newnes, Oxford

    Google Scholar 

  35. Simões G, Farret F (2008) Alternative energy system. CRC Press, Boca Raton

    Google Scholar 

  36. Casadei D, Serra G, Tani A et al (2002) Matrix converter modulation strategies: a new general approach based on space-vector representation of the switch state. IEEE Trans Ind Electron 49:370–381

    Article  Google Scholar 

  37. Huber L, Borojevic D (1995) Space vector modulated three-phase to three-phase matrix with input power factor correction. IEEE Trans Ind Appl 31:1234–1246

    Article  Google Scholar 

  38. Klumpner C, Blaabjerg F (2005) Modulation method for a multiple drive system based on a two-stage direct power conversion topology with reduced input current ripple. IEEE Trans Power Electron 20:922–929

    Article  Google Scholar 

  39. Accioly AGH, Bradaschia F, Cavalcanti M et al (2007) Generalized modulation strategy for matrix converters, part I. In: Proceedings of the IEEE PESC’07, pp 646–652

    Google Scholar 

  40. Wu H, He M (2001) Inherent correlation between multilevel carrier-based PWM and space vector PWM: principle and application. In: Proceedings of the IEEE PEDS’01, pp 276–281

    Google Scholar 

  41. Strzelecki R, Zinoviev GS (2008) Overview of power electronics converters and controls. In: Strzelecki R, Benysek G (eds) Power electronics in smart electrical energy networks. Springer, London

    Chapter  Google Scholar 

  42. Lorenz, L (2009) Power semiconductor devices and smart power IC’s: the enabling technology for future high efficient power conversion systems. In: Proceedings of the IPEMC, pp 193–201

    Google Scholar 

  43. Shigekane H, Fujihira T, Sasagawa K et al (2009) Macro-trend and a future expectation of innovations in power electronics and power devices. Proceedings of the IPEMC, pp 35–39

    Google Scholar 

  44. Bose B (2006) Power electronics and AC drives. Elsevier, Amsterdam

    Google Scholar 

  45. Kazimierczuk M (2008) Pulse-with modulated DC–DC power converters. Wiley, New York

    Book  Google Scholar 

  46. Krein P (1998) Elements of power electronics. New York, Oxford

    Google Scholar 

  47. Shepherd W, Zhang L (2004) Power converter circuits. CRC, New York

    Google Scholar 

  48. Erickson R, Maksimovic D (2001) Fundamentals of power electronics. Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edison R. C. da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

da Silva, E.R.C., Elbuluk, M.E. (2013). Fundamentals of Power Electronics. In: Chakraborty, S., Simões, M., Kramer, W. (eds) Power Electronics for Renewable and Distributed Energy Systems. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5104-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5104-3_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5103-6

  • Online ISBN: 978-1-4471-5104-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics