Skip to main content

Robot Grasp Control

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Systems and Control

Abstract

Given a grasping system composed by a robotic hand and a grasped object, the aim of grasp control is to make the object follow a certain desired trajectory while preserving the contact. In this essay, after a concise explanation of the mathematical model of a grasping system, with a particular focus on the contact constraints, a computed-torque controller that guarantees trajectory tracking and grasp maintenance is described. Last sections contain suggestions for further reading and information about open research challenges in the field of grasp control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    http://sirslab.dii.unisi.it/GraspingCourse/index.html

Bibliography

  • Bicchi A (1995) On the closure properties of robotic grasping. Int J Robot Res 14(4):319–334

    Article  Google Scholar 

  • Bicchi A, Kumar V (2000) Robotic grasping and contact: a review. In: Proceedings of the IEEE international conference on robotics and automation, pp 348–353

    Google Scholar 

  • Bicchi A, Prattichizzo D (1998) Manipulability of cooperating robots with passive joints. In: Proceedings of the IEEE international conference on robotics and automation, Leuven, pp 1038–1044

    Google Scholar 

  • Birglen L, Gosselin CM, Laliberté T (2008) Underactuated robotic hands, vol 40. Springer, Berlin

    Book  MATH  Google Scholar 

  • Brock O, Park J, Toussaint M (2016) Mobility and manipulation. Springer International Publishing, Cham, pp 1007–1036

    Google Scholar 

  • Brost RC (1991) Analysis and planning of planar manipulation tasks. Ph.D. thesis

    Google Scholar 

  • Brost RC, Goldberg KY (1996) A complete algorithm for designing planar fixtures using modular components. IEEE Trans Robot Autom 12(1):31–46

    Article  Google Scholar 

  • Catalano MG, Grioli G, Farnioli E, Serio A, Piazza C, Bicchi A (2014) Adaptive synergies for the design and control of the Pisa/IIT SoftHand. Int J Robot Res 33(5):768–782

    Article  Google Scholar 

  • Chen IM, Burdick JW (1993) Finding antipodal point grasps on irregularly shaped objects. IEEE Trans Robot Autom 9(4):507–512

    Article  Google Scholar 

  • Cherif M, Gupta KK (1999) Planning quasi-static fingertip manipulation for reconfiguring objects. IEEE Trans Robot Autom 15(5):837–848

    Article  Google Scholar 

  • Chiacchio P, Chiaverini S, Sciavicco L, Siciliano B (1991) Global task space manipulability ellipsoids for multiple-arm systems. IEEE Trans Robot Autom 7(5):678–685

    Article  Google Scholar 

  • Deimel R, Brock O (2016) A novel type of compliant and underactuated robotic hand for dexterous grasping. Int J Robot Res 35(1–3):161–185

    Article  Google Scholar 

  • Ferrari C, Canny J (1992) Planning optimal grasps. In: Proceedings of the IEEE international conference on robotics and automation. IEEE, pp 2290–2295

    Google Scholar 

  • Goldfeder C, Ciocarlie M, Peretzman J, Dang H, Allen PK (2009) Data-driven grasping with partial sensor data. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, IROS 2009, pp 1278–1283

    Google Scholar 

  • Han L, Trinkle JC (1998) Dextrous manipulation by rolling and finger gaiting. In: Proceedings of the IEEE international conference on robotics and automation, vol 1. IEEE, pp 730–735

    Google Scholar 

  • Han L, Li Z, Trinkle JC, Qin Z, Jiang S (2000) The planning and control of robot dexterous manipulation. In: Proceedings of the IEEE international conference on robotics and automation, pp 263–269

    Google Scholar 

  • Hanafusa H, Asada H (1979) Handling of constrained objects by active elastic fingers and its applications to assembly. Trans Soc Instrum Control Eng 15(1):61–66

    Article  Google Scholar 

  • Higashimori M, Kimura M, Ishii I, Kaneko M (2007) Friction independent dynamic capturing strategy for a 2D stick-shaped object. In: Proceedings of the IEEE international conference on robotics and automation, pp 217–224

    Google Scholar 

  • Jameson J (1985) Analytic techniques for automated grasp. Ph.D. thesis

    Google Scholar 

  • Jen F, Shoham M, Longman RW (1996) Liapunov stability of force-controlled grasps with a multi-fingered hand. Int J Robot Res 15(2):137–154

    Article  Google Scholar 

  • Johansson RS, Edin BB (1991) Mechanisms for grasp control. In: Pedotti A, Ferrarin M (eds) Restoration of walking for paraplegics. Recent advancements and trends, 3rd edn. Edizioni Pro Juventute, IOS Press, pp 57–65

    Google Scholar 

  • Li Z, Hsu P, Sastry S (1989) Grasping and coordinated manipulation by a multifingered robot hand. Int J Robot Res 8(4):33–50

    Article  Google Scholar 

  • Lynch K (1996) Nonprehensile manipulation: mechanics and planning. Ph.D. thesis

    Google Scholar 

  • Mahler J, Liang J, Niyaz S, Laskey M, Doan R, Liu X, Ojea JA, Goldberg K (2017) Dex-net 2.0: deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics. arXiv preprint arXiv:1703.09312

    Google Scholar 

  • Mason MT (1982) Manipulator grasping and pushing operations. PhD thesis, Massachusetts Institute of Technology. Reprinted in Robot Hands and the Mechanics of Manipulation, MIT Press, Cambridge, MA (1985)

    Google Scholar 

  • Mason MT, Salisbury JK (1985) Robot hands and the mechanics of manipulation. The MIT Press, Cambridge, MA

    Google Scholar 

  • Montana DJ (1988) The kinematics of contact and grasp. Int J Robot Res 7(3):17–32

    Article  Google Scholar 

  • Murray RM, Li Z, Sastry SS (1994) A mathematical introduction to robotic manipulation. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Namiki A, Imai Y, Ishikawa M, Kaneko M (2003) Development of a high-speed multifingered hand system and its application to catching. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, vol 3. IEEE, pp 2666–2671

    Google Scholar 

  • Nguyen V (1988) Constructing force-closure grasps. Int J Robot Res 7(3):3–16

    Article  MathSciNet  Google Scholar 

  • Odhner LU, Dollar AM (2011) Dexterous manipulation with underactuated elastic hands. In: Proceedings of the IEEE international conference on robotics and automation, pp 5254–5260

    Google Scholar 

  • Okamura AM, Smaby N, Cutkosky MR (2000) An overview of dexterous manipulation. In: Proceedings of the IEEE international conference on robotics and automation, pp 255–262

    Google Scholar 

  • Park YC, Starr GP (1992) Grasp synthesis of polygonal objects using a three-fingered robot hand. Int J Robot Res 11(3):163–184

    Article  Google Scholar 

  • Peshkin MA, Sanderson AC (1988) Planning robotic manipulation strategies for workpieces that slide. IEEE J Robot Autom 4(5):524–531

    Article  Google Scholar 

  • Pollard NS (1997) Parallel algorithms for synthesis of whole-hand grasps. In: Proceedings of the IEEE international conference on robotics and automation

    Book  Google Scholar 

  • Pozzi M, Malvezzi M, Prattichizzo D (2017) On grasp quality measures: grasp robustness and contact force distribution in underactuated and compliant robotic hands. IEEE Robot Autom Lett 2(1):329–336

    Article  Google Scholar 

  • Pozzi M, Salvietti G, Bimbo J, Malvezzi M, Prattichizzo D (2018) The closure signature: a functional approach to model underactuated compliant robotic hands. IEEE Robot Autom Lett 3(3):2206–2213

    Article  Google Scholar 

  • Pozzi M, Malvezzi M, Prattichizzo D (2019) MOOC on the art of grasping and manipulation in robotics: design choices and lessons learned. In: Lepuschitz W, Merdan M, Koppensteiner G, Balogh R, Obdrzalek D (eds) Robotics in education. Springer International Publishing, Cham, pp 71–78

    Chapter  Google Scholar 

  • Prattichizzo D, Bicchi A (1997) Consistent task specification for manipulation systems with general kinematics. J Dyn Syst Meas Control 119(4):760–767

    Article  MATH  Google Scholar 

  • Prattichizzo D, Trinkle JC (2016) Grasping. In: Siciliano B, Khatib O (ed) Springer handbook of robotics. Springer Science & Business Media, Berlin, pp 955–988

    Chapter  Google Scholar 

  • Prattichizzo D, Malvezzi M, Gabiccini M, Bicchi A (2012) On the manipulability ellipsoids of underactuated robotic hands with compliance. Robot Auton Syst 60(3):337–346. Elsevier

    Google Scholar 

  • Prattichizzo D, Malvezzi M, Gabiccini M, Bicchi A (2013) On motion and force controllability of precision grasps with hands actuated by soft synergies. IEEE Trans Robot 29(6):1440–1456

    Article  Google Scholar 

  • Reuleaux F (1876) The kinematics of machinery. Macmillan. Republished by Dover, New York (1963)

    Google Scholar 

  • Roa MA, Suarez R (2009) Computation of independent contact regions for grasping 3-D objects. IEEE Trans Robot 25(4):839–850

    Article  Google Scholar 

  • Ruiz Garate V, Pozzi M, Prattichizzo D, Tsagarakis N, Ajoudani A (2018) Grasp stiffness control in robotic hands through coordinated optimization of pose and joint stiffness. IEEE Robot Autom Lett 3(4):3952–3959

    Article  Google Scholar 

  • Salisbury JK, Roth B (1983) Kinematic and force analysis of articulated mechanical hands. J Mech Transm Autom Des 105(1):35–41

    Article  Google Scholar 

  • Santina CD, Grioli G, Catalano M, Brando A, Bicchi A (2015) Dexterity augmentation on a synergistic hand: the Pisa/IIT SoftHand+, pp 497–503

    Google Scholar 

  • Saxena A, Driemeyer J, Ng AY (2008) Robotic grasping of novel objects using vision. Int J Robot Res 27(2):157–173

    Article  Google Scholar 

  • Shimoga KB (1996) Robot grasp synthesis algorithms: a survey. Int J Robot Res 15(3):230–266

    Article  Google Scholar 

  • Sundaralingam B, Hermans T (2017) Relaxed-rigidity constraints: in-grasp manipulation using purely kinematic trajectory optimization. In: Proceedings of robotics: science and systems, Cambridge, MA

    Google Scholar 

  • ten Pas A, Gualtieri M, Saenko K, Platt R (2017) Grasp pose detection in point clouds. Int J Robot Res 36(13–14):1455–1473

    Google Scholar 

  • Wimboeck T, Ott C, Albu-Schaffer A, Hirzinger G (2011) Comparison of object-level grasp controllers for dynamic dexterous manipulation. Int J Robot Res 31(1):3–23

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Prattichizzo .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag London Ltd., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Prattichizzo, D., Pozzi, M. (2020). Robot Grasp Control. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_171-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5102-9_171-2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5102-9

  • Online ISBN: 978-1-4471-5102-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Robot Grasp Control
    Published:
    18 April 2020

    DOI: https://doi.org/10.1007/978-1-4471-5102-9_171-2

  2. Original

    Robot Grasp Control
    Published:
    28 November 2014

    DOI: https://doi.org/10.1007/978-1-4471-5102-9_171-1