Advertisement

Multi-Criteria Applications in Renewable Energy Analysis, a Literature Review

  • Rimal Abu Taha
  • Tugrul Daim
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Energy impacts so many aspects of our lives. This makes it necessary to evaluate multiple aspects when we are evaluating energy alternatives. This chapter introduces us to a spectrum of tools for this evaluation.

Keywords

Renewable Energy Analytic Hierarchy Process Wind Farm Analytic Network Process Project Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aras H et al (2004) Multi-criteria selection for a wind observation station location using analytic hierarchy process. Renew Energy 29:1383–1392CrossRefGoogle Scholar
  2. 2.
    Lee SK et al (2009) Decision support for prioritizing energy technologies against high oil prices: a fuzzy analytic hierarchy process approach. J Loss Prev Process Ind 22:915–920CrossRefGoogle Scholar
  3. 3.
    Afgan NH, Carvalho MG (2002) Multi-criteria assessment of new and renewable energy power plants. Energy 27:739–755CrossRefGoogle Scholar
  4. 4.
    San Cristóbal JR (2011) Multi-criteria decision-making in the selection of a renewable energy project in spain: the Vikor method. Renew Energy 36:498–502CrossRefGoogle Scholar
  5. 5.
    Cavallaro F (2009) Multi-criteria decision aid to assess concentrated solar thermal technologies. Renew Energy 34:1678–1685CrossRefGoogle Scholar
  6. 6.
    Pohekar SD, Ramachandran M (2004) Application of multi-criteria decision-making to sustainable energy planning–a review. Renew Sustain Energy Rev 8:365–381CrossRefGoogle Scholar
  7. 7.
    Climaco J (1997) Multicriteria analysis. Springer, New YorkMATHCrossRefGoogle Scholar
  8. 8.
    Diakaki C et al (2010) A multi-objective decision model for the improvement of energy efficiency in buildings. Energy 35:5483–5496CrossRefGoogle Scholar
  9. 9.
    Wang M et al (2010) The comparison between MAUT and PROMETHEE. In: IEEE international conference on industrial engineering and engineering management (IEEM), 2010, pp 753–757Google Scholar
  10. 10.
    Polatidis H et al (2006) Selecting an appropriate multi-criteria decision analysis technique for renewable energy planning. Energy Sources Part B 1:181–193CrossRefGoogle Scholar
  11. 11.
    Chu M-T et al (2007) Comparison among three analytical methods for knowledge communities group-decision analysis. Expert Syst Appl 33:1011–1024CrossRefGoogle Scholar
  12. 12.
    Hobbs BF, Horn GTF (1997) Building public confidence in energy planning: a multimethod MCDM approach to demand-side planning at BC gas. Energy Policy 25:357–375CrossRefGoogle Scholar
  13. 13.
    Wang J–J et al (2009) Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew Sustain Energy Rev 13:2263–2278CrossRefGoogle Scholar
  14. 14.
    Zhou P et al (2006) Decision analysis in energy and environmental modeling: an update. Energy 31:2604–2622CrossRefGoogle Scholar
  15. 15.
    Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New YorkMATHGoogle Scholar
  16. 16.
    Saaty RW (1987) The analytic hierarchy process–what it is and how it is used. Math Model 9:161–176MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Saaty TL (1996) Decision-making with dependence and feedback: the analytic network process. RSW Publications, PittsburghGoogle Scholar
  18. 18.
    Cheng EWL, Li H (2005) Analytic network process applied to project selection. J Constr Eng Manag 131:459–466CrossRefGoogle Scholar
  19. 19.
    Oberschmidt J et al (2010) Modified PROMETHEE approach for assessing energy technologies. Int J Energy Sector Manag 4:183–212Google Scholar
  20. 20.
    Wang J–J et al (2008) A fuzzy multi-criteria decision-making model for trigeneration system. Energy Policy 36:3823–3832CrossRefGoogle Scholar
  21. 21.
    Greening LA, Bernow S (2004) Design of coordinated energy and environmental policies: use of multi-criteria decision-making. Energy Policy 32:721–735CrossRefGoogle Scholar
  22. 22.
    Diakoulaki D, Karangelis F (2007) Multi-criteria decision analysis and cost-benefit analysis of alternative scenarios for the power generation sector in Greece. Renew Sustain Energy Rev 11:716–727CrossRefGoogle Scholar
  23. 23.
    Cavallaro F (2010) A comparative assessment of thin-film photovoltaic production processes using the ELECTRE III method. Energy Policy 38:463–474CrossRefGoogle Scholar
  24. 24.
    Hämäläinen RP, Karjalainen R (1992) Decision support for risk analysis in energy policy. Eur J Oper Res 56:172–183CrossRefGoogle Scholar
  25. 25.
    Kablan MM (2004) Decision support for energy conservation promotion: an analytic hierarchy process approach. Energy Policy 32:1151–1158, 7 2004Google Scholar
  26. 26.
    Köne AÇ, Büke T (2007) An analytical network process (ANP) evaluation of alternative fuels for electricity generation in Turkey. Energy Policy 35:5220–5228CrossRefGoogle Scholar
  27. 27.
    Lee SK et al (2007) A study on making a long-term improvement in the national energy efficiency and GHG control plans by the AHP approach. Energy Policy 35:2862–2868CrossRefGoogle Scholar
  28. 28.
    Lee SK et al (2008) The competitiveness of Korea as a developer of hydrogen energy technology: the AHP approach. Energy Policy 36:1284–1291CrossRefGoogle Scholar
  29. 29.
    Önüt S et al (2008) Multiple criteria evaluation of current energy resources for Turkish manufacturing industry. Energy Convers Manage 49:1480–1492CrossRefGoogle Scholar
  30. 30.
    Ulutas BH (2005) Determination of the appropriate energy policy for Turkey. Energy 30:1146–1161CrossRefGoogle Scholar
  31. 31.
    Beccali M et al (1998) Decision-making in energy planning: the ELECTRE multicriteria analysis approach compared to a FUZZY-SETS methodology. Energy Convers Manag 39:1869–1881Google Scholar
  32. 32.
    Georgopoulou E et al (1997) A multicriteria decision aid approach for energy planning problems: the case of renewable energy option. Eur J Oper Res 103:38–54MATHCrossRefGoogle Scholar
  33. 33.
    Kowalski K et al (2009) Sustainable energy futures: methodological challenges in combining scenarios and participatory multi-criteria analysis. Eur J Oper Res 197:1063–1074CrossRefGoogle Scholar
  34. 34.
    Topcu YI, Ulengin F (2004) Energy for the future: an integrated decision aid for the case of Turkey. Energy 29:137–154CrossRefGoogle Scholar
  35. 35.
    Borges AR, Antunes CH (2003) A fuzzy multiple objective decision support model for energy-economy planning. Eur J Oper Res 145:304–316MATHCrossRefGoogle Scholar
  36. 36.
    Kahraman C, Kaya I (2010) A fuzzy multicriteria methodology for selection among energy alternatives. Expert Syst Appl 37:6270–6281CrossRefGoogle Scholar
  37. 37.
    Lee SK et al (2008) A fuzzy analytic hierarchy process approach for assessing national competitiveness in the hydrogen technology sector. Int J Hydrogen Energy 33:6840–6848CrossRefGoogle Scholar
  38. 38.
    Afgan NH et al (2007) Multi-criteria evaluation of hydrogen system options. Int J Hydrogen Energy 32:3183–3193CrossRefGoogle Scholar
  39. 39.
    Diakoulaki D et al (1999) The use of a preference disaggregation method in energy analysis and policy making. Energy 24:157–166CrossRefGoogle Scholar
  40. 40.
    Enzensberger N et al (2002) Policy instruments fostering wind energy projects–a multi-perspective evaluation approach. Energy Policy 30:793–801CrossRefGoogle Scholar
  41. 41.
    Keeney RL et al (1987) Structuring West Germany’s energy objectives. Energy Policy 15:352–362CrossRefGoogle Scholar
  42. 42.
    Schulz V, Stehfest H (1984) Regional energy supply optimization with multiple objectives. Eur J Oper Res 17:302–312CrossRefGoogle Scholar
  43. 43.
    Chatzimouratidis AI, Pilavachi PA (2009) Sensitivity analysis of technological, economic and sustainability evaluation of power plants using the analytic hierarchy process. Energy Policy 37:788–798CrossRefGoogle Scholar
  44. 44.
    Chatzimouratidis AI, Pilavachi PA (2009) Technological, economic and sustainability evaluation of power plants using the analytic hierarchy process. Energy Policy 37:778–787CrossRefGoogle Scholar
  45. 45.
    Nigim K et al (2004) Pre-feasibility MCDM tools to aid communities in prioritizing local viable renewable energy sources. Renew Energy 29:1775–1791CrossRefGoogle Scholar
  46. 46.
    Pilavachi PA et al (2009) Multi-criteria evaluation of hydrogen and natural gas fuelled power plant technologies. Appl Therm Eng 29:2228–2234CrossRefGoogle Scholar
  47. 47.
    Tzeng G-H et al (2005) Multi-criteria analysis of alternative-fuel buses for public transportation. Energy Policy 33:1373–1383CrossRefGoogle Scholar
  48. 48.
    Beccali M et al (2003) Decision-making in energy planning. Application of the Electre method at regional level for the diffusion of renewable energy technology. Renew Energy 28:2063–2087, 10 2003Google Scholar
  49. 49.
    Siskos J, Hubert P (1983) Multi-criteria analysis of the impacts of energy alternatives: a survey and a new comparative approach. Eur J Oper Res 13:278–299CrossRefGoogle Scholar
  50. 50.
    Haralambopoulos DA, Polatidis H (2003) Renewable energy projects: structuring a multi-criteria group decision-making framework. Renew Energy 28:961–973CrossRefGoogle Scholar
  51. 51.
    Cai YP et al (2009) Planning of community-scale renewable energy management systems in a mixed stochastic and fuzzy environment. Renew Energy 34:1833–1847CrossRefGoogle Scholar
  52. 52.
    Kahraman C et al (2009) A comparative analysis for multiattribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process. Energy 34:1603–1616CrossRefGoogle Scholar
  53. 53.
    Afgan NH, Carvalho MG (2008) Sustainability assessment of a hybrid energy system. Energy Policy 36:2903–2910CrossRefGoogle Scholar
  54. 54.
    Afgan NH et al (2007) Multi-criteria evaluation of natural gas resources. Energy Policy 35:704–713CrossRefGoogle Scholar
  55. 55.
    Burton J, Hubacek K (2007) Is small beautiful? A multicriteria assessment of small-scale energy technology applications in local governments. Energy Policy 35:6402–6412CrossRefGoogle Scholar
  56. 56.
    Cavallaro F, Ciraolo L (2005) A multicriteria approach to evaluate wind energy plants on an Italian island. Energy Policy 33:235–244CrossRefGoogle Scholar
  57. 57.
    Polatidis H, Haralambopoulos DA (2004) Local renewable energy planning: a participatory multi-criteria approach. Energy Sources 26:1253–1264CrossRefGoogle Scholar
  58. 58.
    Roth S et al (2009) Sustainability of electricity supply technology portfolio. Ann Nucl Energy 36:409–416CrossRefGoogle Scholar
  59. 59.
    Aragonés-Beltrán P et al (2010) An ANP-based approach for the selection of photovoltaic solar power plant investment projects. Renew Sustain Energy Rev 14:249–264CrossRefGoogle Scholar
  60. 60.
    Kaya T, Kahraman C (2010) Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: the case of Istanbul. Energy 35:2517–2527CrossRefGoogle Scholar
  61. 61.
    Lee AHI et al (2009) Multi-criteria decision-making on strategic selection of wind farms. Renew Energy 34:120–126, 1 2009Google Scholar
  62. 62.
    Meade LA, Presley A (2005) R&D project selection using ANP… the analytic network process. IEEE Potentials 21:22–28CrossRefGoogle Scholar
  63. 63.
    Goletsis Y et al (2003) Project ranking in the Armenian energy sector using a multicriteria method for groups. Ann Oper Res 120:135–157MathSciNetMATHCrossRefGoogle Scholar
  64. 64.
    Goumas M, Lygerou V (2000) An extension of the PROMETHEE method for decision making in fuzzy environment: Ranking of alternative energy exploitation projects. Eur J Oper Res 123:606–613MATHCrossRefGoogle Scholar
  65. 65.
    Safaei Mohamadabadi H et al (2009) Development of a multi-criteria assessment model for ranking of renewable and non-renewable transportation fuel vehicles. Energy 34:112–125CrossRefGoogle Scholar
  66. 66.
    Ben Salah C et al (2008) Multi-criteria fuzzy algorithm for - energy management of a domestic photovoltaic panel. Renew Energy 33:993–1001CrossRefGoogle Scholar
  67. 67.
    Cavallaro F (2010) Fuzzy TOPSIS approach for assessing thermal-energy storage in concentrated solar power (CSP) systems. Appl Energy 87:496–503CrossRefGoogle Scholar
  68. 68.
    Mohanty RP et al (2005) A fuzzy ANP-based approach to R&D project selection: a case study. Int J Prod Res 43:5199–5216MATHCrossRefGoogle Scholar
  69. 69.
    Begic F, Afgan NH (2007) Sustainability assessment tool for the decision-making in selection of energy system–Bosnian case. Energy 32:1979–1985CrossRefGoogle Scholar
  70. 70.
    Cherni JA et al (2007) Energy supply for sustainable rural livelihoods. A multi-criteria decision-support system. Energy Policy 35:1493–1504CrossRefGoogle Scholar
  71. 71.
    Espie P et al (2003) Multiple criteria decision making techniques applied to electricity distribution system planning. IEE Proc Gener Transm Distrib 150:527–535CrossRefGoogle Scholar
  72. 72.
    Goumas MG et al (1999) Computational methods for planning and evaluating geothermal energy projects. Energy Policy 27:147–154CrossRefGoogle Scholar
  73. 73.
    Ivanova EY et al (2005) A multi—criteria approach to expansion planning of wind power plants in electric power systems. In: Power tech, 2005 IEEE Russia, 2005, pp 1–4Google Scholar
  74. 74.
    Chatzimouratidis AI, Pilavachi PA (2007) Objective and subjective evaluation of power plants and their non-radioactive emissions using the analytic hierarchy process. Energy Policy 35:4027–4038CrossRefGoogle Scholar
  75. 75.
    Jianjian Z et al (2009) Multi-criteria evaluation of alternative power supply using analytic hierarchy process. In: International conference on sustainable power generation and supply 2009. SUPERGEN ‘09, pp 1–7Google Scholar
  76. 76.
    Salminen P et al (1998) Comparing multicriteria methods in the context of environmental problems. Eur J Oper Res 104:485–496MATHCrossRefGoogle Scholar
  77. 77.
    Huang JP et al (1995) Decision analysis in energy and environmental modeling. Energy 20:843–855CrossRefGoogle Scholar
  78. 78.
    Lahdelma R et al (2000) Using multicriteria methods in environmental planning and management. Environ Manag 26:595–605CrossRefGoogle Scholar
  79. 79.
    Linkov I et al (2006) From comparative risk assessment to multi-criteria decision analysis and adaptive management: recent developments and applications. Environ Int 32:1072–1093CrossRefGoogle Scholar
  80. 80.
    Mirasgedis S, Diakoulaki D (1997) Multicriteria analysis vs. externalities assessment for the comparative evaluation of electricity generation systems. Eur J Oper Res 102:364–379MATHCrossRefGoogle Scholar
  81. 81.
    Patlitzianas KD et al (2007) Assessing the renewable energy producers’ environment in EU accession member states. Energy Convers Manag 48:890–897CrossRefGoogle Scholar
  82. 82.
    Lee SK et al (2010) Econometric analysis of the R&D performance in the national hydrogen energy technology development for measuring relative efficiency: the fuzzy AHP/DEA integrated model approach. Int J Hydrogen Energy 35:2236–2246CrossRefGoogle Scholar
  83. 83.
    Hacking T, Guthrie P (2008) A framework for clarifying the meaning of triple bottom-line, integrated, and sustainability assessment. Environ Impact Assess Rev 28:73–89, 0 2008Google Scholar
  84. 84.
    Daim T et al (2009) Technology assessment for clean energy technologies: the case of the Pacific Northwest. Technol Soc 31:232–243CrossRefGoogle Scholar
  85. 85.
    Zhou P et al (2008) A survey of data envelopment analysis in energy and environmental studies. Eur J Oper Res 189:1–18MATHCrossRefGoogle Scholar
  86. 86.
    Chatzimouratidis AI, Pilavachi PA (2008) Multicriteria evaluation of power plants impact on the living standard using the analytic hierarchy process. Energy Policy 36:1074–1089CrossRefGoogle Scholar
  87. 87.
    Li YF et al (2010) Energy and environmental systems planning under uncertainty–an inexact fuzzy-stochastic programming approach. Appl Energy 87:3189–3211CrossRefGoogle Scholar
  88. 88.
    Theodorou S et al (2010) The use of multiple criteria decision-making methodologies for the promotion of RES through funding schemes in Cyprus, a review. Energy Policy 38:7783–7792CrossRefGoogle Scholar
  89. 89.
    Hobbs BF, Meier PM (2002) Multicriteria methods for resource planning: an experimental comparison. IEEE Trans Power Syst 9:1811–1817CrossRefGoogle Scholar
  90. 90.
    Opricovic S, Tzeng G-H (2004) Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur J Oper Res 156:445–455MATHCrossRefGoogle Scholar
  91. 91.
    Opricovic S, Tzeng G-H (2007) Extended VIKOR method in comparison with outranking methods. Eur J Oper Res 178:514–529MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Portland State UniversityPortlandUSA

Personalised recommendations