Shunt Piezoelectric Circuits

  • Qibo Mao
  • Stanislaw Pietrzko


In this chapter, the shunt piezoelectric circuits are discussed for vibration/noise suppression. In Sect. 8.1, a brief review of development of shunt piezoelectric damping techniques is given. In Sect. 8.2, the general modelling for the different shunt piezoelectric damping (such as RL series circuit, RL parallel circuit, RL-C circuit, and negative capacitance circuit) is presented. In Sect. 8.3, based on minimizing sound power of structure, the optimal parameters for shunt circuits are discussed. In Sect. 8.4, the switch law for the state- and pulse-switching circuits is discussed. In Sect. 8.5, the detail numerical calculations are given and discussed. In Sect. 8.6, with the example of clamped plate, experimental results are given by using RL series/parallel circuit and pulse-switching circuit.


Control Performance Piezoelectric Element Sound Power Shunt Circuit Negative Capacitance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hagood NW, Flotow A (1991) Damping of structural vibration with piezoelectric materials and passive electrical networks. J Sound Vib 146:243–268CrossRefGoogle Scholar
  2. 2.
    Wu SY (1996) Piezoelectric shunts with parallel R-L circuit for smart structural damping and vibration control. Proc SPIE Smart Struct Conf 259–269Google Scholar
  3. 3.
    Caruso G (2001) A critical analysis of electric shunt circuits employed in piezoelectric passive vibration damping. Smart Mater Struct 10:1059–1068CrossRefGoogle Scholar
  4. 4.
    Park CH (2003) Dynamics modelling of beams with shunted piezoelectric elements. J Sound Vib 268:115–129CrossRefGoogle Scholar
  5. 5.
    Fleming AJ, Behrens S, Moheimani SOR (2003) Reducing the inductance requirements of piezoelectric shunt damping systems. Smart Mater Struct 12:57–64CrossRefGoogle Scholar
  6. 6.
    Agneni A, Mastroddi F, Polli GM (2003) Shunted piezoelectric patches in elastic and aeroelastic vibrations. Comput Struct 81:91–105CrossRefGoogle Scholar
  7. 7.
    Behrens S, Fleming AJ, Moheimani SOR (2003) A broadband controller for shunt piezoelectric damping of structural vibration. Smart Mater Struct 12:18–28CrossRefGoogle Scholar
  8. 8.
    Lin Q, Ermanni P (2004) Semi-active damping of a clamped plate using PZT. Int J Solids Struct 41:1741–1752CrossRefzbMATHGoogle Scholar
  9. 9.
    Davis CL, Lesieutre GA (2000) An actively tuned solid-state vibration absorber using capacitive shunting of piezoelectric stiffness. J Sound Vib 232:601–617CrossRefGoogle Scholar
  10. 10.
    Neubauer M, Oleskiewicz R, Popp K, Krzyzynski T (2006) Optimization of damping and absorbing performance of shunted piezo elements utilizing negative capacitance. J Sound Vib 298:84–107CrossRefGoogle Scholar
  11. 11.
    Clark WW (2000) Vibration control with state-switching piezoelectric materials. J Intell Mater Syst Struct 11:263–271Google Scholar
  12. 12.
    Cunefare KA, Rosa SD, Sadegh N, Larson G (2002) State-switched absorber for vibration control of point-excited beams. J Intell Mater Syst Struct 13:97–105CrossRefGoogle Scholar
  13. 13.
    Lawrence RC, Clark WW (2002) Comparison of low-frequency piezoelectric switching shunt techniques for structures damping. Smart Mater Struct 11:370–376CrossRefGoogle Scholar
  14. 14.
    Lawrence RC, Clark WW (2003) A novel semi-active multi-modal vibration control law for a piezoceramic actuator. ASME Trans J Vib Acoust 125:214–222CrossRefGoogle Scholar
  15. 15.
    Lawrence RC, Clark WW (2001) Energy dissipation analysis of piezoceramic semi-active vibration control. J Intell Mater Syst Struct 12:729–736CrossRefGoogle Scholar
  16. 16.
    Niederberger D, Morari M (2006) An autonomous shunt circuit for vibration damping. Smart Mater Struct 15:359–364CrossRefGoogle Scholar
  17. 17.
    Guyomar D, Badel A (2006) Nonlinear semi-passive multimodal vibration damping: an efficient probabilistic approach. J Sound Vib 294:249–268CrossRefGoogle Scholar
  18. 18.
    Kurdila AJ, Clark WW, Wang W, McDaniel DE (2002) Stability of a class of real-times switched piezoelectric shunts. J Intell Mater Syst Struct 13:107–116CrossRefGoogle Scholar
  19. 19.
    Badel A, Sebald G, Guyomar D, Lallart M, Lefeuvre E, Richard C, Qiu J (2006) Piezoelectric vibration control by synchronized switching on adaptive voltage sources: towards wideband semi-active damping. J Acoust Soc Am 119:2815–2825CrossRefGoogle Scholar
  20. 20.
    Lefeuvre E, Badel A, Petit L, Richard C, Guyomar D (2006) Semi-passive piezoelectric structural damping by synchronized switching on voltage sources. J Intell Mater Syst Struct 17:653–660CrossRefGoogle Scholar
  21. 21.
    Faiz A, Guyomar D, Petit L, Buttay C (2006) Wave transmission reduction by a piezoelectric semi-passive technique. Sensor Actuator 128:230–237CrossRefGoogle Scholar
  22. 22.
    Lin Q, Rixen D (2006) Self-switching and resistive circuits for a piezo patch in vibration suppression. Smart Mater Struct 15:518–528CrossRefGoogle Scholar
  23. 23.
    Hollkamp JJ (1994) Multimodal passive vibration suppression with piezoelectric materials and resonant shunts. J Intell Mater Syst Struct 5:105–114CrossRefGoogle Scholar
  24. 24.
    Behrens S, Moheimani SOR, Fleming AJ (2003) Multiple mode current flowing passive piezoelectric shunt controller. J Sound Vib 266:929–942CrossRefGoogle Scholar
  25. 25.
    Pota HR, Moheimani SOR, Smith M (2002) Resonant controllers for smart structures. Smart Mater Struct 11:1–8CrossRefGoogle Scholar
  26. 26.
    Moheimani SOR (2004) Dynamics, stability, and control of multivariable piezoelectric shunts. IEEE Trans Mechatron 9:87–98CrossRefGoogle Scholar
  27. 27.
    Moheimani SOR (2004) Multimode piezoelectric shunt damping with a highly resonant impedance. IEEE Trans Control Syst Technol 12:484–491CrossRefGoogle Scholar
  28. 28.
    Batra RC, Dell’Isolo F, Vidoli S, Vigilante D (2005) Multimode vibration suppression with passive two-terminal distributed network incorporating piezoceramic transducers. Int J Solids Struct 42:3115–3132CrossRefzbMATHGoogle Scholar
  29. 29.
    Kim J, Kim J-H (2004) Multimode shunt damping of piezoelectric smart panel for noise reduction. J Acoust Soc Am 116:943–948Google Scholar
  30. 30.
    Ahmadian M, Jeric KM (2001) On the application of shunted piezoceramics for increasing acoustic transmission loss in structures. J Sound Vib 243:347–359CrossRefGoogle Scholar
  31. 31.
    Ahmadian M, Jeric KM, Inman DJ (2001) An experimental evaluation of smart damping materials for reducing structural noise and vibrations. ASME Trans J Vib Acoust 123:533–535CrossRefGoogle Scholar
  32. 32.
    Kim J, Jung Y-C (2006) Piezoelectric smart panels for broadband noise reduction. J Intell Mater Syst Struct 17:685–690CrossRefGoogle Scholar
  33. 33.
    Kusculuoglu ZK, Royston TJ (2005) Finite element formulation for composite plates with piezoceramic layers for optimal vibration control applications. Smart Mater Struct 14:1139–1153CrossRefGoogle Scholar
  34. 34.
    Kusculuoglu ZK, Royston TJ (2004) Finite element model of a beam with a piezoceramic patch actuator. J Sound Vib 276:27–44CrossRefGoogle Scholar
  35. 35.
    Law HH, Koss LL (1996) Characterization of mechanical vibration damping by piezoelectric materials. J Sound Vib 197:489–513CrossRefGoogle Scholar
  36. 36.
    Park CH, Kim YH, Park HC (2005) Dynamic formulations of plates with shunted piezoelectric materials. J Intell Mater Syst Struct 16:971–976CrossRefGoogle Scholar
  37. 37.
    Ozer MB, Royston TJ (2003) Passively minimizing structural sound radiation using shunted piezoelectric materials. J Acoust Soc Am 114:1934–1946CrossRefGoogle Scholar
  38. 38.
    Kim J, Ryu Y-H, Choi S-B (2000) New shunting parameter tuning method for piezoelectric damping based on measured electrical impedance. Smart Mater Struct 9:868–877CrossRefGoogle Scholar
  39. 39.
    Niederberger D, Fleming A, Moheimani SOR, Morari M (2004) Adaptive multi-mode resonant piezoelectric shunt damping. Smart Mater Struct 13:1025–1035CrossRefGoogle Scholar
  40. 40.
    Niederberger D, Pietrzko S, Morari M (2004) Noise control in a duct with online-tuned shunted piezoelectric materials. Proc SPIE Smart Struct Mater Conf 5386:405–413Google Scholar
  41. 41.
    Fleming AJ, Moheimani SOR (2003) Adaptive piezoelectric shunt damping. Smart Mater Struct 12:36–48CrossRefGoogle Scholar
  42. 42.
    Tang J, Wang KW (2001) Active-passive hybrid piezoelectric networks for vibration control: comparisons and improvement. Smart Mater Struct 10:794–806CrossRefGoogle Scholar
  43. 43.
    Tang T, Wang KW (2000) High authority and nonlinearity issues in active-passive hybrid piezoelectric networks for structural damping. J Intell Mater Syst Struct 11:581–591Google Scholar
  44. 44.
    Morgan RA, Wang KW (2002) Active-passive piezoelectric absorbers for systems under multiple non-stationary harmonic excitations. J Sound Vib 255:685–700CrossRefGoogle Scholar
  45. 45.
    Clark RL, Saunders WR, Gibbs GP (1998) Adaptive structures: dynamics and control. Wiley, New YorkGoogle Scholar
  46. 46.
    Pietrzko S, Mao Q (2011) Control of structural sound radiation and vibration using shunt piezoelectric materials. J Syst Des Dyn 5(5):752–764Google Scholar
  47. 47.
    Pietrzko S, Mao Q (2009) Noise reduction in a duct using passive/semiactive shunt loudspeakers. In: The 16th international congress on sound and vibration, Kraków, Poland, 5–9 July, 8 ppGoogle Scholar
  48. 48.
    Pietrzko S, Mao Q (2008) Reduction of structural sound radiation and vibration using shunt piezoelectric materials. In: 14th international conference mechatronic systems and materials, MSM 2008, Bialystok, Poland, July 14–17, 8 ppGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Qibo Mao
    • 1
  • Stanislaw Pietrzko
    • 2
  1. 1.School of Aircraft EngineeringNanchang HangKong UniversityNanchangChina, People’s Republic
  2. 2.Empa, Swiss Federal Laboratories for Materials Science and TechnologyDübendorfSwitzerland

Personalised recommendations