An Interoperable and Inclusive User Modeling Concept for Simulation and Adaptation

Part of the Human–Computer Interaction Series book series (HCIS)


User models can be considered as explicit representations of the properties of an individual user including user’s needs, preferences as well as physical, cognitive and behavioral characteristics. Due to the wide range of applications, it is often difficult to have a common format or even definition of user models. The lack of a common definition also makes different user models – even if developed for the same purpose -incompatible to each other. It does not only reduce the portability of user models but also restricts new models to leverage benefit from earlier research on similar field. This chapter presents a brief literature survey on user models and concept of an interoperable user model that takes a more inclusive approach than previous research. It is an initiative of the EU VUMS cluster of projects which aims to simulate user interaction and adapt interfaces across a wide variety of digital and non-digital platforms for both able bodied and disabled users. We have already been successful to define an application and platform-independent user model exchange format and the importing of any user profile across all projects.


User Model User Profile User Agent Simulation Purpose Virtual Human 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  2. 2.
    Carmagnola, F., Cena, F., & Gena, C. (2007). User modeling in the social web. In B. Apolloni, R. J. Howlett, & L. C. Jain (Eds.), Knowledge-based intelligent information and engineering systems (Band 4694 in lecture notes in computer science, pp. 745–752). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  3. 3.
    Cappelli, T. M. & Duffy, V. G. (2006, July 4–6). Motion capture for job risk classifications incorporating dynamic aspects of work. In: Digital human modeling for design and engineering conference, Lyon. Warrendale: SAE International.Google Scholar
  4. 4.
    Laitila, L. (2005). Datormanikinprogram om verktyg vid arbetsplatsutformning – En kritisk studie av programanvändning. Thesis, Luleå Technical University, Luleå.Google Scholar
  5. 5.
    Lamkull, D., Hanson, L., & Ortengren, R. (2009). A comparative study of digital human modeling simulation results and their outcomes in reality: A case study within manual assembly of automobiles. International Journal of Industrial Ergonomics, 39, 428–441.CrossRefGoogle Scholar
  6. 6.
    Porter, J., Case, K., Freer, M. T., & Bonney, M. C. (1993). Computer-aided ergonomics design of automobiles. In Automotive ergonomics. London: Taylor and Francis.Google Scholar
  7. 7.
    DeCarlo, D., Metaxas, D., & Stone, M. (1998). An anthropometric face model using variational techniques. In Proceedings of the 25th annual conference on computer graphics and interactive techniques SIGGRAPH’98 (pp. 67–74). New York: ACM.CrossRefGoogle Scholar
  8. 8.
    Kähler, K., Haber, J., Yamauchi, H., Seidel, H. P. (2002). Head shop: Generating animated head models with anatomical structure. In ACM SIGGRAPH/EG symposium on computer animation (pp. 55–64).Google Scholar
  9. 9.
    Lee, S. H., & Terzopoulos, D. (2006, July). Heads up! Biomechanical modeling and neuromuscular control of the neck. ACM Transactions on Graphics, 25(3), 1188–1198. Proceedings of ACM SIGGRAPH 06.Google Scholar
  10. 10.
    DiLorenzo, P. C., Zordan, V. B., Sanders, B. L. (2008, December). Laughing out loud: Control for modeling anatomically inspired laughter using audio. ACM Transactions on Graphics, 27(5), 125:1–8.Google Scholar
  11. 11.
    Van Nierop, O. A., Van der Helm, A., Overbeeke, K. J., & Djajadiningrat, T. J. (2008, January). A natural human hand model. The Visual Computer, 24(1), 31–44.CrossRefGoogle Scholar
  12. 12.
    Komura, T., Shinagawa, Y., & Kunii, T. L. (2000). Creating and retargeting motion by the musculoskeletal human body model. The Visual Computer, 16(5), 254–270.CrossRefGoogle Scholar
  13. 13.
    Pennestrì, E., Stefanelli, R., Valentini, P. P., & Vita, L. (2007). Virtual musculo-skeletal model for the biomechanical analysis of the upper limb. Journal of Biomechanics, 40(6): 1350–1361. ISSN 0021-9290,  10.1016/j.jbiomech.2006.05.013. Google Scholar
  14. 14.
    Koo, T. K., Mak, A. F., Hung, L. K. (2002, June). In vivo determination of subject-specific musculotendon parameters: applications to the prime elbow flexors in normal and hemiparetic subjects. Clinical Biomechanics, 17(5): 390–399. ISSN 0268-0033,  10.1016/S0268-0033(02)00031-1
  15. 15.
    Garner, B. A., & Pandy, M. G. (2003). Estimation of musculotendon properties in the human upper limb. Annals of Biomedical Engineering, 31, 207–220.CrossRefGoogle Scholar
  16. 16.
    Choi, J. (2008). Developing a 3-dimensional kinematic model of the hand for ergonomic analyses of hand posture, hand space envelope, and tendon excursion. PhD thesis, The University of Michigan.Google Scholar
  17. 17.
    Holzbaur, K. R. S., Murray, W. M., & Delp, S. L. (2005). A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Annals of Biomedical Engineering, 33, 829–840.CrossRefGoogle Scholar
  18. 18.
    Hingtgen, B. A., McGuire, J. R., Wang, M., Harris, G. F. (2003, September 17–21). Design and validation of an upper extremity kinematic model for application in stroke rehabilitation. In Proceedings of the 25th annual international conference of the IEEE Engineering in Medicine and Biology Society, 2003, Cancun (Vol. 2, pp. 1682–1685).Google Scholar
  19. 19.
    Apkarian, J., Naumann, S., & Cairns, B. (1989). A three-dimensional kinematic and dynamic model of the lower limb. Journal of Biomechanics, 22, 143–155.CrossRefGoogle Scholar
  20. 20.
    Eng, K., Lewis, R. L., Tollinger, I., Chu, A., Howes, A., & Vera, A. (2006). Generating automated predictions of behavior strategically adapted to specific performance objectives. In: ACM/SIGCHI conference on human factors in computing systems 2006 (pp. 621–630). New York: ACM.Google Scholar
  21. 21.
    Pai, Y. C., & Patton, J. L. (1997). Center of mass velocity-position predictions for balance control. Journal of Biomechanics, 11, 341–349.Google Scholar
  22. 22.
    Pai, Y. C., & Patton, J. L. (1998). Erratum: Center of mass velocity-position predictions for balance control. Journal of Biomechanics, 31, 199.CrossRefGoogle Scholar
  23. 23.
    Pai, Y. C., Rogers, M. W., Patton, J. L., Cain, T. D., & Hanke, T. (1998). Static versus dynamic predictions of protective stepping following waist-pull perturbations in young and older adults. Journal of Biomechanics, 31, 1111–1118.CrossRefGoogle Scholar
  24. 24.
    Patton, J. L., Lee, W. A., & Pai, Y. C. (2000). Relative stability improves with experience in a dynamic standing task. Experimental Brain Research, 135, 117–126.CrossRefGoogle Scholar
  25. 25.
    Patton, J. L., Pai, Y. C., & Lee, W. A. (1997) A simple model of the feasible limits to postural stability. Presented at IEEE/Engineering in Medicine an Biology Society Meeting, Chicago.Google Scholar
  26. 26.
    Rao, S. S., Bontrager, E. L., Gronley, J. K., Newsam, C. J., & Perry, J. (1996). Threedimensional kinematics of wheelchair propulsion. IEEE Transactions on Rehabilitation Engineering, 4, 152–160.CrossRefGoogle Scholar
  27. 27.
    Sapin, E., Goujon, H., de Almeida, F., Fodé, P., & Lavaste, F. (2008). Functional gait analysis of trans-femoral amputees using two different single-axis prosthetic knees with hydraulic swing-phase control: Kinematic and kinetic comparison of two prosthetic knees. Prosthetics and Orthotics International, 32, 2,201–218.CrossRefGoogle Scholar
  28. 28.
    Prince, F., Corriveau, H., Hebert, R., & Winter, D. A. (1997, April). Gait in the elderly. Gait & Posture, 5(2), 128–135(8).CrossRefGoogle Scholar
  29. 29.
    Coluccini, M., Maini, E. S., Martelloni, C., Sgandurra, G., & Cioni, G. (2007, April). Kinematic characterization of functional reach to grasp in normal and in motor disabled children. Gait & Posture, 25,(4), 493–501. ISSN 0966-6362,  10.1016/j.gaitpost.2006.12.015
  30. 30.
    Ouerfelli, M., Kumar, V., & Harwin, W. S. (1999, November). Kinematic modeling of head-neck movements. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 29(6), 604–615. doi:  10.1109/3468.798064, URL: Google Scholar
  31. 31.
    Shapiro, A., Faloutsos, P., Ng-Thow-Hing, V. (2005). Dynamic animation and control environment. In Proceedings of graphics interface 2005, Victoria (pp. 61–70).Google Scholar
  32. 32.
    John, B. E., & Kieras, D. (1996). The GOMS family of user interface analysis techniques: Comparison and contrast. ACM Transactions on Computer Human Interaction, 3, 320–351.CrossRefGoogle Scholar
  33. 33.
    Gajos K., & Weld D. S. (2004). SUPPLE: Automatically generating user interfaces. In: Proceedings of IUI, 2004 (pp. 83–100).Google Scholar
  34. 34.
    Biswas, P., Langdon, P., & Robinson, P. (2012). Designing inclusive interfaces through user modeling and simulation. International Journal of Human Computer Interaction, Taylor & Francis, 28(1). doi: 10.1080/10447318.2011.565718.

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of EngineeringUniversity of CambridgeCambridge, CambridgeshireUK
  2. 2.Centre for Research and Technology HellasInformation Technologies InstituteThessalonikiGreece
  3. 3.Fraunhofer FITSankt AugustinGermany
  4. 4.Fraunhofer IAOStuttgartGermany
  5. 5.Institut für Graphische DatenverarbeitungFraunhofer IGDDarmstadtGermany

Personalised recommendations