Advertisement

Introduction

  • Rudolf Kruse
  • Christian Borgelt
  • Frank Klawonn
  • Christian Moewes
  • Matthias Steinbrecher
  • Pascal Held
Part of the Texts in Computer Science book series (TCS)

Abstract

In this chapter we give a very brief introduction to intelligent systems. In order to design such a system, it is necessary to efficiently represent and process knowledge about the given problem setting. For certain types of problems, techniques inspired by natural or biological processes proved successful. These techniques belong to the field of computational intelligence. Our main objective with this textbook is to give a methodical introduction to this field. Among such methods we find artificial neural networks, evolutionary algorithms, and fuzzy systems. Finally, we mention how to use this book and where additional material can be found the Internet.

References

  1. C. Borgelt, M. Steinbrecher and R. Kruse. Graphical Models: Representations for Learning, Reasoning and Data Mining, 2nd edition. J. Wiley & Sons, Chichester, United Kingdom, 2009 zbMATHGoogle Scholar
  2. J. Brownlee. Clever Algorithms: Nature-Inspired Programming Recipes. Lulu Press, Raleigh, NC, USA, 2011 Google Scholar
  3. M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, Cambridge, MA, USA, 2004 zbMATHCrossRefGoogle Scholar
  4. A.P. Engelbrecht. Computational Intelligence—An Introduction, 2nd edition. J. Wiley & Sons, Chichester, United Kingdom, 2007 CrossRefGoogle Scholar
  5. S.O. Haykin. Neural Networks and Learning Machines, 3rd edition. Prentice Hall, Upper Saddle River, NJ, USA, 2008 Google Scholar
  6. E. Hüllermeier, R. Kruse and F. Hoffmann (eds.) Computational Intelligence for Knowledge-Based Systems Design. Springer-Verlag, Berlin/Heidelberg, Germany, 2010 Google Scholar
  7. R. Kruse, J. Gebhardt and F. Klawonn. Foundations of Fuzzy Systems. J. Wiley & Sons, Chichester, United Kingdom, 1994 Google Scholar
  8. G.F. Luger. Artificial Intelligence: Structures and Strategies for Complex Problem Solving, 5th edition. Pearson Education, Essex, United Kingdom, 2005 Google Scholar
  9. K. Michels, F. Klawonn, R. Kruse and A. Nürnberger. Fuzzy Control: Fundamentals, Stability and Design of Fuzzy Controllers. Springer-Verlag, Berlin/Heidelberg, Germany, 2006 zbMATHGoogle Scholar
  10. M. Minsky. Logical Versus Analogical or Symbolic Versus Connectionist or Neat Versus Scruffy. AI Magazine, 12(2):647–674. MIT Press, Cambridge, MA, USA, 1991 Google Scholar
  11. C.L. Mumford and L.C. Jain (eds.) Computational Intelligence: Collaboration, Fusion and Emergence. Springer-Verlag, Berlin/Heidelberg, Germany, 2009 zbMATHGoogle Scholar
  12. G. Rozenberg, T. Bäck and J.N. Kok (eds.) Handbook of Natural Computing. Section III: Evolutionary Computation. Springer-Verlag, Berlin/Heidelberg, Germany, 2012 zbMATHGoogle Scholar
  13. S.J. Russell and P. Norvig. Artificial Intelligence—A Modern Approach, 3rd edition. Prentice Hall, Upper Saddle River, NJ, USA, 2009 Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Rudolf Kruse
    • 1
  • Christian Borgelt
    • 2
  • Frank Klawonn
    • 3
  • Christian Moewes
    • 1
  • Matthias Steinbrecher
    • 4
  • Pascal Held
    • 1
  1. 1.Faculty of Computer ScienceOtto-von-Guericke University MagdeburgMagdeburgGermany
  2. 2.Intelligent Data Analysis & Graphical Models Research UnitEuropean Centre for Soft ComputingMieresSpain
  3. 3.FB InformatikOstfalia University of Applied SciencesWolfenbüttelGermany
  4. 4.SAP Innovation CenterPotsdamGermany

Personalised recommendations