Skip to main content

Transformation Electromagnetics for Cloaking, Lensing, and Radiation Applications

  • Chapter
  • First Online:
Book cover Transformation Electromagnetics and Metamaterials

Abstract

The transformation electromagnetics technique provides a powerful tool to electromagnetic and optical designers by offering a blueprint for creating novel devices that feature a variety of unconventional wave-material interaction properties. Combined with the recent advances in metamaterials technology, the coordinate transformation-based design methodology paves the way to realizing devices that perform entirely new functions or traditional functions in different geometrical configurations that are advantageous in practical applications. Here, transformation electromagnetics techniques are applied to the design of invisibility cloaks, lenses, beam controllers, and antennas. Each device design is illustrated with an example, including the associated specifications and performance expectations. For the two-dimensional embedded antenna application, a microwave metamaterial design is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leonhardt U (2006) Optical conformal mapping. Science 312:1777–1780

    Article  MathSciNet  MATH  Google Scholar 

  2. Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312:1780–1782

    Article  MathSciNet  MATH  Google Scholar 

  3. Schurig D, Pendry JB, Smith DR (2006) Calculation of material properties and ray tracing in transformation media. Opt Express 14:9794–9804

    Article  Google Scholar 

  4. Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977–980

    Article  Google Scholar 

  5. Huang Y, Feng Y, Jiang T (2007) Electromagnetic cloaking by layered structure of homogeneous isotropic materials. Opt Express 15:11133–11141

    Article  Google Scholar 

  6. Gaillot DP, Croenne C, Lippens D (2008) An all-dielectric route for terahertz cloaking. Opt Express 16:3986–3992

    Article  Google Scholar 

  7. Zolla F, Guenneau S, Nicolet A, Pendry JB (2007) Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect. Opt Lett 32:1069–1071

    Article  Google Scholar 

  8. Zhang B, Chen H, Wu B-I, Kong JA (2008) Extraordinary surface voltage effect in the invisibility cloak with an active device inside. Phy Rev Lett 100:063904

    Article  Google Scholar 

  9. Ruan Z, Yan M, Neff CW, Qiu M (2007) Ideal cylindrical cloaks: perfect but sensitive to tiny perturbations. Phy Rev Lett 99:113903

    Article  Google Scholar 

  10. Chen H, Wu B-I, Zhang B, Kong JA (2007) Electromagnetic wave interactions with a metamaterial cloak. Phy Rev Lett 99:063903

    Article  Google Scholar 

  11. Chen H, Chan CT (2008) Time delays and energy transport velocities in three dimensional ideal cloaking devices. J Appl Phys 104:033113

    Article  Google Scholar 

  12. Leonhardt U, Tyc T (2009) Broadband invisibility by non-Euclidean cloaking. Science 323:110–112

    Article  Google Scholar 

  13. Kwon D-H, Werner DH (2008) Two-dimensional eccentric elliptic electromagnetic cloaks. Appl Phys Lett 92:013503

    Article  Google Scholar 

  14. Nicolet A, Zolla F, Guenneau S (2008) Finite-element analysis of cylindrical invisibility cloaks of elliptical cross section. IEEE Trans Magn 44:1150–1153

    Article  Google Scholar 

  15. Rahm M, Schurig D, Roberts DA, Cummer SA, Smith DR, Pendry JB (2008) Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations. Photon Nanostruct Fundam Appl 6:87–95

    Article  Google Scholar 

  16. Zhang J, Luo Y, Chen H, Wu B-I (2008) Cloak of arbitrary shape. J Opt Soc Amer B 25:1776–1779

    Article  Google Scholar 

  17. Wu Q, Zhang K, Meng F, Li L (2008) Material parameters characterization for arbitrary N-sided regular polygonal invisible cloak. J Phys D 42:035408

    Article  Google Scholar 

  18. Kwon D-H, Werner DH (2008) Two-dimensional electromagnetic cloak having a uniform thickness for elliptic cylindrical regions. Appl Phys Lett 92:113502

    Article  Google Scholar 

  19. Nicolet A, Zolla F, Guenneau S (2008) Electromagnetic analysis of cylindrical cloaks of an arbitrary cross section. Opt Lett 33:1584–1586

    Article  Google Scholar 

  20. Li C, Yao K, Li F (2008) Two-dimensional electromagnetic cloaks with non-conformal inner and outer boundaries. Opt Express 16:19366–19374

    Article  MathSciNet  Google Scholar 

  21. Rahm M, Cummer SA, Schurig D, Pendry JB, Smith DR (2008) Optical design of reflectionless complex media by finite embedded coordinate transformations. Phys Rev Lett 100:063903

    Article  Google Scholar 

  22. Kwon D-H, Werner DH (2008) Transformation optical designs for wave collimators, flat lenses and right-angle bends. New J Phys 10:115023

    Article  Google Scholar 

  23. Donderici B, Teixeira FL (2008) Metamaterial blueprints for reflectionless waveguide bends. IEEE Microw Wireless Comp Lett 18:233–235

    Article  Google Scholar 

  24. Huangfu J, Xi S, Kong F, Zhang J, Chen H, Wang D, Wu B-I, Ran L, Kong JA (2008) Application of coordinate transformation in bent waveguides. J Appl Phys 104:014502

    Article  Google Scholar 

  25. Rahm M, Roberts DA, Pendry JB, Smith DR (2008) Transformation-optical design of adaptive beam bends and beam expanders. Opt Express 16:11555–11567

    Article  Google Scholar 

  26. Emiroglu CD, Kwon D-H (2010) Impedance-matched three-dimensional beam expander and compressor designs via transformation optics. J Appl Phys 107:084502

    Article  Google Scholar 

  27. Jiang WX, Cui TJ, Ma HF, Zhou XY, Cheng Q (2008) Cylindrical-to-plane-wave conversion via embedded optical transformation. Appl Phys Lett 92:261903

    Article  Google Scholar 

  28. Zhang JJ, Luo Y, Xi S, Chen HS, Ran LX, Wu B-I, Kong JA (2008) Directive emission obtained by coordinate transformation. Prog Electromagn Res 81:437–446

    Article  Google Scholar 

  29. Roberts DA, Kindtz N, Smith DR (2009) Optical lens compression via transformation optics. Opt Express 17:16535–16542

    Article  Google Scholar 

  30. Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966–3969

    Article  Google Scholar 

  31. Shelby RA, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. Science 292:77–79

    Article  Google Scholar 

  32. Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov DA, Bartal G, Zhang X (2008) Three-dimensional optical metamaterial with a negative refractive index. Nature 455:376–380

    Article  Google Scholar 

  33. Yan M, Yan W, Qiu M (2008) Cylindrical superlens by a coordinate transformation. Phy Rev B 78:125113

    Article  Google Scholar 

  34. Chen H, Luo X, Ma H, Chan CT (2008) The anti-cloak. Opt Express 16:14603–14608

    Article  Google Scholar 

  35. Yang T, Chen H, Luo X, Ma H (2008) Superscatterer: enhancement of scattering with complementary media. Opt Express 16:18545–18550

    Article  Google Scholar 

  36. Ng J, Chen H, Chan CT (2009) Metamaterial frequency-selective superabsorber. Opt Lett 34:644–646

    Article  Google Scholar 

  37. Lai Y, Zheng H, Zhang Z-Q, Chan CT (2011) Manipulating sources using transformation optics with ‘folded geometry’. J Opt 13:024009

    Article  Google Scholar 

  38. Leonhardt U, Philbin TG (2006) General relativity in electrical engineering. New J Phys 8:247

    Article  Google Scholar 

  39. Lai Y, Chen H, Zhang Z-Q, Chan CT (2009) Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell. Phys Rev Lett 102:093901

    Article  Google Scholar 

  40. Lai Y, Ng J, Chen H, Han D, Xiao J, Zhang Z-Q, Chan CT (2009) Illusion optics: the optical transformation of an object into another object. Phys Rev Lett 102:253902

    Article  Google Scholar 

  41. Kwon D-H, Werner DH (2008) Restoration of antenna parameters in scattering environments using electromagnetic cloaking. Appl Phys Lett 92:113507

    Article  Google Scholar 

  42. Popa B-I, Allen J, Cummer SA (2009) Conformal array design with transformation electromagnetics. Appl Phys Lett 94:244102

    Article  Google Scholar 

  43. Kwon D-H (2009) Virtual circular array using material-embedded linear source distributions. Appl Phys Lett 95:173503

    Article  Google Scholar 

  44. Tichit P-H, Burokur SN, de Lustrac A (2009) Ultradirective antenna via transformation optics. J Appl Phys 105:104912

    Article  Google Scholar 

  45. Tichit P-H, Burokur SN, Germain D, de Lustrac A (2011) Design and experimental demonstration of a high-directive emission with transformation optics. Phy Rev B 83:115108

    Article  Google Scholar 

  46. Kwon D-H (2010) Transformation electromagnetic design of an embedded monopole in a ground recess for conformal applications. IEEE Antennas Wireless Propag Lett 9:432–435

    Article  Google Scholar 

  47. Li J, Pendry JB (2008) Hiding under the carpet: a new strategy for cloaking. Phys Rev Lett 101:203901

    Article  Google Scholar 

  48. Liu R, Ji C, Mock JJ, Chin JY, Cui TJ, Smith DR (2009) Broadband ground-plane cloak. Science 323:366–369

    Article  Google Scholar 

  49. Valentine J, Li J, Zentgraf T, Bartal G, Zhang X (2009) An optical cloak made of dielectrics. Nat Mater 8:568–571

    Article  Google Scholar 

  50. Kundtz N, Smith DR (2009) Extreme-angle broadband metamaterial lens. Nat Mater 9:129–132

    Article  Google Scholar 

  51. Demetriadou A, Hao Y (2011) Slim Luneburg lens for antenna applications. Opt Express 19:19925–19934

    Article  Google Scholar 

  52. Mei ZL, Bai J, Cui TJ (2011) Experimental verification of a broadband planar focusing antenna based on transformation optics. New J Phys 13:063028

    Article  Google Scholar 

  53. Garcia-Meca C, Martinez A, Leonhardt U (2011) Engineering antenna radiation patterns via quasi-conformal mappings. Opt Express 19:23743–23750

    Article  Google Scholar 

  54. Kwon D-H, Werner DH (2010) Transformation electromagnetics: an overview of the theory and applications. IEEE Antennas Propag Mag 52:24–46

    Article  Google Scholar 

  55. Chen H, Chan CT, Sheng P (2010) Transformation optics and metamaterials. Nat Mater 9:387–396

    Article  Google Scholar 

  56. Kuntz N, Smith DR, Pendry JB (2011) Electromagnetic design with transformation optics. Proc IEEE 99:1622–1633

    Article  Google Scholar 

  57. Milton GW, Briane M, Willis JR (2006) On cloaking for elasticity and physical equations with a transformation invariant form. New J Phys 8:248

    Article  Google Scholar 

  58. Gabrielli LH, Cardenas J, Poitras CB, Lipson M (2009) Silicon nanostructure cloak operating at optical frequencies. Nat Photon 3:461–463

    Article  Google Scholar 

  59. Lee J, Blair J, Tamma V, Wu Q, Rhee S, Summers C, Park W (2009) Direct visualization of optical frequency invisibility cloak based on silicon nanorod array. Opt Express 17:12922–12928

    Article  Google Scholar 

  60. Ma HF, Cui TJ (2010) Three-dimensional broadband ground-plane cloak made of metamaterials. Nat Commun 1:1–6

    Google Scholar 

  61. Ergin T, Stenger N, Brenner P, Pendry JB, Wegener M (2010) Three-dimensional invisibility cloak at optical wavelengths. Science 328:337–339

    Article  Google Scholar 

  62. Ma HF, Cui TJ (2010) Three-dimensional broadband and broad-angle transformation-optics lens. Nat Commun 1:124

    Article  Google Scholar 

  63. Kundtz NB, Smith DR, Urzhumov Y, Landy NI (2010) Enhancing imaging systems using transformation optics. Opt Express 18:21238–21251

    Article  Google Scholar 

  64. Tang W, Argyropoulos C, Kallos E, Song W, Hao Y (2010) Discrete coordinate transformation for designing all-dielectric flat antennas. IEEE Trans Antennas Propag 58:3795–3804

    Article  Google Scholar 

  65. Yang R, Tang W, Hao Y (2011) A broadband zone plate lens from transformation optics. Opt Express 19:12348–12355

    Article  Google Scholar 

  66. Zentgraf T, Valentine J, Tapia N, Li J, Zhang X (2010) An optical “Janus” device for integrated photonics. Adv Mater 22:2561–2564

    Article  Google Scholar 

  67. Hunt J, Tyler T, Dhar S, Tsai Y-J, Bowen P, Larouche S, Jokerst NM, Smith DR (2012) Planar, flattened Luneburg lens at infrared wavelengths. Opt Express 20:1706–1713

    Article  Google Scholar 

  68. Bao D, Rajab KZ, Tang W, Hao Y (2012) Experimental demonstration of broadband transmission through subwavelength aperture. Appl Phys Lett 97:134105

    Article  Google Scholar 

  69. Yang R, Tang W, Hao Y, Youngs I (2011) A coordinate transformation-based broadband flat lens via microstrip array. IEEE Antennas Wireless Propag Lett 10:99–102

    Article  Google Scholar 

  70. Mei ZL, Bai J, Cui TJ (2010) Illusion devices with quasi-conformal mapping. J Electromagn Waves Appl 24:2561–2573

    Article  Google Scholar 

  71. Mastin CW, Thompson JF (1984) Quasiconformal mappings and grid generation. SIAM J Sci Stat Comp 5:305–310

    Article  MathSciNet  MATH  Google Scholar 

  72. Ives DC, Zacharias RM (1989) Conformal mapping and orthogonal grid generation. J Propul Power 5:327–333

    Article  Google Scholar 

  73. Thompson JF, Soni BK, Weatherill NP (1999) Handbook of grid generation. CRC Press, Boca Raton

    MATH  Google Scholar 

  74. Chang Z, Zhou X, Hu J, Hu G (2012) Design method for quasi-isotropic transformation materials based on inverse Laplace’s equation with sliding boundaries. Opt Express 18:6089–6096

    Article  Google Scholar 

  75. Turpin JP, Massoud AT, Jiang ZH, Werner PL, Werner DH (2010) Conformal mappings to achieve simple material parameters for transformation optics devices. Opt Express 18:244–252

    Article  Google Scholar 

  76. Schmiele M, Varma VS, Rockstuhl C, Lederer F (2010) Designing optical elements from isotropic materials by using transformation optics. Phys Rev A 81:033837

    Article  Google Scholar 

  77. Tang L, Yin J, Yuan G, Du J, Gao H, Dong X, Lu Y, Du C (2011) General conformal transformation method based on Schwarz-Christoffel approach. Opt Express 19:15119–15126

    Article  Google Scholar 

  78. Ma YG, Wang N, Ong CK (2010) Application of inverse, strict conformal transformation to design waveguide devices. J Opt Soc Am A: 27:968–972

    Article  Google Scholar 

  79. Landy NI, Padilla WJ (2009) Guiding light with conformal transformations. Opt Express 17:14872–14879

    Article  Google Scholar 

  80. Cummer SA, Popa B-I, Schurig D, Smith DR, Pendry JB (2006) Full-wave simulations of electromagnetic cloaking structures. Phys Rev E 74:036621

    Article  Google Scholar 

  81. Haupt RL, Werner DL (2007) Genetic algorithms in electromagnetics. Wiley, Hoboken, NJ

    Google Scholar 

  82. Chen H, Chan CT (2007) Transformation media that rotate electromagnetic fields. Appl Phys Lett 90:241105

    Article  Google Scholar 

  83. Kwon D-H, Werner DH (2008) Polarization splitter and polarization rotator designs based on transformation optics. Opt Express 16:18731–18738

    Article  Google Scholar 

  84. Kwon D-H, Werner DH (2009) Flat focusing lens designs having minimized reflection based on coordinate transformation techniques. Opt Express 17:7807–7817

    Article  Google Scholar 

  85. Xu X, Feng Y, Jiang T (2008) Electromagnetic beam modulation through transformation optical structures. New J Phys 10:115027

    Article  Google Scholar 

  86. Cummer SA, Kundtz N, Popa B-I (2009) Electromagnetic surface and line sources under coordinate transformations. Phys Rev A 80:033820

    Article  Google Scholar 

  87. Kwon D-H, Emiroglu CD (2012) Two-dimensional metamaterial designs for line-source radiation from a virtual location. In: Proceedings of the 6th European conference on antennas and propagation, Prague, 26–30 March 2012, pp 1706–1710

    Google Scholar 

  88. Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1999) Magnetism from condcutors and enhanced nonlinear phenomena. IEEE Trans Microw Theory Tech 47:2075–2084

    Article  Google Scholar 

  89. Smith DR, Schultz S, Markos P, Soukoulis CM (2002) Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B 65:195104

    Article  Google Scholar 

  90. Schurig D, Mock JJ, Smith DR (2006) Elecric-field-coupled resonators for negative permittivity metamaterials. Appl Phys Lett 88:041109

    Article  Google Scholar 

  91. Lifante G (2003) Integrated photonics: fundamentals. Wiley, Chichester

    Book  Google Scholar 

  92. Pollock CR, Lipson M (2003) Integrated photonics. Kluwer Academic Publishers, Norwell

    Book  Google Scholar 

  93. Wu Q, Turpin JP, Werner DH (2012) Integrated photonic systems based on transformation optics enabled gradient index devices. Light Sci Appl 1:e38

    Article  Google Scholar 

  94. Tichit P-H, Burokur SN, de Lustrac A (2010) Waveguide taper engineering using coordinate transformation technology. Opt Express 18:767–772

    Article  Google Scholar 

  95. Johnson SG, Manolatou C, Fan S, Villeneuve PR, Joannopoulos JD, Haus HA (1998) Elimination of cross talk in waveguide intersections. Opt Lett 23:1855–1857

    Article  Google Scholar 

  96. Bogaerts W, Dumon P, Thourhout D, Baets R (2007) Low-loss, low cross-talk crossings for silicon-on-insulator nanophotonic waveguides. Opt Lett 32:2801–2803

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the NSF MRSEC program under grant number DMR-0820404. Kwon acknowledges the support by the ECE Department of UMass Amherst for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas H. Werner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Kwon, DH., Wu, Q., Werner, D.H. (2014). Transformation Electromagnetics for Cloaking, Lensing, and Radiation Applications. In: Werner, D., Kwon, DH. (eds) Transformation Electromagnetics and Metamaterials. Springer, London. https://doi.org/10.1007/978-1-4471-4996-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4996-5_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4995-8

  • Online ISBN: 978-1-4471-4996-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics