Skip to main content

Transformation Electromagnetics and Non-standard Devices

  • Chapter
  • First Online:
Transformation Electromagnetics and Metamaterials

Abstract

The use of transformation electromagnetics for microwave applications is presented. Implementation of non-standard devices such as microwave antennas and waveguide tapers proposed by the Institut d’Electronique Fondamentale at the University of Paris-Sud are reviewed. The operating principle and the respective coordinate transformation of each device is presented and numerical simulations are performed to verify the theoretical formulations. The method to obtain constitutive electromagnetic parameters mimicking the calculated transformed space is detailed and confirmed by full-wave simulations performed using discrete material parameter values and by measurements performed on fabricated metamaterial-based prototypes. The results show that transformation electromagnetics is very interesting for the design and realization of high-performance non-standard devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312:1780–1782

    Article  MathSciNet  MATH  Google Scholar 

  2. Leonhardt U (2006) Optical conformal mapping. Science 312:1777–1780

    Article  MathSciNet  MATH  Google Scholar 

  3. Schurig D, Mock JJ, Justice BJ et al (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977–980

    Article  Google Scholar 

  4. Cai W, Chettiar UK, Kildishev AV et al (2007) Optical cloaking with metamaterials. Nat Photon 1:224–227

    Article  Google Scholar 

  5. Kanté B, de Lustrac A, Lourtioz JM et al (2008) Infrared cloaking based on the electric response of split ring resonators. Opt Express 16:9191–9198

    Article  Google Scholar 

  6. Gabrielli LH, Cardenas J, Poitras CB et al (2009) Silicon nanostructure cloak operating at optical frequencies. Nat Photon 3:461–463

    Article  Google Scholar 

  7. Kanté B, Germain D, de Lustrac A (2009) Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies. Phys Rev B 80:201104

    Article  Google Scholar 

  8. Valentine J, Li J, Zentgraf T et al (2009) An optical cloak made of dielectrics. Nat Mater 8:568–571

    Article  Google Scholar 

  9. Ergin T, Stenger N, Brenner P et al (2010) Three-dimensional invisibility cloak at optical wavelengths. Science 328:337–339

    Article  Google Scholar 

  10. Leonhardt U, Tyc T (2009) Broadband invisibility by non-Euclidean cloaking. Science 323:110–112

    Article  Google Scholar 

  11. Li J, Pendry JB (2008) Hiding under the carpet: a new strategy for cloaking. Phys Rev Lett 101:203901

    Article  Google Scholar 

  12. Liu R, Ji C, Mock JJ et al (2009) Broadband ground-plane cloak. Science 323:366–369

    Article  Google Scholar 

  13. Jiang WX, Cui TJ, Qiang C, Chin JY, Yang XM, Liu R, Smith DR (2008) Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces. Appl Phys Lett 92:264101

    Article  Google Scholar 

  14. Luo Y, Chen H, Zhang J, Ran L, Kong JA (2008) Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations. Phys Rev B 77:125127

    Article  Google Scholar 

  15. Rahm M, Schurig D, Roberts DA, Cummer SA, Smith DR, Pendry JB (2008) Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations. Photon Nanostruct Fundam Appl 6:87–95

    Article  Google Scholar 

  16. Greenleaf A, Kurylev Y, Lassas M, Uhlmann G (2007) Electromagnetic wormholes and virtual magnetic monopoles from metamaterials. Phys Rev Lett 99:183901

    Article  Google Scholar 

  17. Zhang J, Luo Y, Chen H, Huangfu J, Wu BI, Ran L, Kong JA (2009) Guiding waves through an invisible tunnel. Opt Express 17:6203–6208

    Article  Google Scholar 

  18. Huangfu J, Xi S, Kong F, Zhang J, Chen H, Wang D, Wu BI, Ran L, Kong JA (2008) Application of coordinate transformation in bent waveguides. J Appl Phys 104:014502

    Article  Google Scholar 

  19. Kwon DH, Werner DH (2008) Transformation optical designs for wave collimators, flat lenses and right-angle bends. New J Phys 10:115023

    Article  Google Scholar 

  20. Landy NI, Padilla WJ (2009) Guiding light with conformal transformations. Opt Express 17:14872–14879

    Article  Google Scholar 

  21. Rahm M, Roberts DA, Pendry JB, Smith DR (2008) Transformation-optical design of adaptive beam bends and beam expanders. Opt Express 16:11555–11567

    Article  Google Scholar 

  22. Roberts DA, Rahm M, Pendry JB, Smith DR (2009) Transformation-optical design of sharp waveguide bends and corners. Appl Phys Lett 93:251111

    Article  Google Scholar 

  23. Tichit PH, Burokur SN, de Lustrac A (2010) Waveguide taper engineering using coordinate transformation technology. Opt Express 18:767–772

    Article  Google Scholar 

  24. Kong F, Wu BI, Kong JA, Huangfu J, Xi S (2007) Planar focusing antenna design by using coordinate transformation technology. Appl Phys Lett 91:253509

    Article  Google Scholar 

  25. Chen H, Hou B, Chen S, Ao X, Wen W, Chan CT (2009) Design and experimental realization of a broadband transformation media field rotator at microwave frequencies. Phys Rev Lett 102:183903

    Article  Google Scholar 

  26. Tichit PH, Burokur SN, Germain D, de Lustrac A (2011) Design and experimental demonstration of a high-directive emission with transformation optics. Phys Rev B 83:155108

    Article  Google Scholar 

  27. Tamm IY (1924) Electrodynamics of an anisotropic medium in the special case of relativity. J Russ Phys Chem Soc 56:248

    Google Scholar 

  28. Plebanski J (1960) Electromagnetic waves in gravitational fields. Phys Rev 118:1396–1408

    Article  MathSciNet  MATH  Google Scholar 

  29. Han T, Qiu CW (2010) Isotropic nonmagnetic flat cloaks degenerated from homogeneous anisotropic trapeziform cloaks. Opt Express 18:13038–13043

    Article  Google Scholar 

  30. Schmiele M, Varma VS, Rockstuhl C, Lederer F (2010) Designing optical elements from isotropic materials by using transformation optics. Phys Rev A 81:33837

    Article  Google Scholar 

  31. Turpin JP, Massoud AT, Jiang ZH, Werner PL, Werner DH (2010) Conformal mappings to achieve simple material parameters for transformation optics devices. Opt Express 18:244–252

    Article  Google Scholar 

  32. Chang Z, Zhou X, Hu J, Hu G (2010) Design method for quasi-isotropic transformation materials based on inverse Laplace’s equation with sliding boundaries. Opt Express 18:6089–6096

    Article  Google Scholar 

  33. Leonhardt U (2000) Space-time geometry of quantum dielectrics. Phys Rev A 62:012111

    Article  Google Scholar 

  34. Bergamin L (2008) Generalized transformation optics from triple spacetime metamaterials. Phys Rev A 78:43825

    Article  Google Scholar 

  35. Thompson RT, Cummer SA, Frauendiener J (2011) A completely covariant approach to transformation optics. J Opt 13:024008

    Article  Google Scholar 

  36. Crudo RA, O’Brien JG (2009) Metric approach to transformation optics. Phys Rev A 80:033824

    Article  Google Scholar 

  37. Cheng Q, Cui TJ, Jiang WX, Cai BG (2010) An omnidirectional electromagnetic absorber made of metamaterials. New J Phys 12:063006

    Article  Google Scholar 

  38. Narimanov EE, Kildishev AV (2009) Optical black hole: Broadband omnidirectional light absorber. Appl Phys Lett 95:041106

    Article  Google Scholar 

  39. Genov DA, Zhang S, Zhang X (2009) Mimicking celestial mechanics in metamaterials. Nat Phys 5:687–692

    Article  Google Scholar 

  40. Jiang WX, Cui TJ, Ma HF, Zhou XY, Cheng Q (2008) Cylindrical-to-plane-wave conversion via embedded optical transformation. Appl Phys Lett 92:261903

    Article  Google Scholar 

  41. Kundtz N, Smith DR (2009) Extreme-angle broadband metamaterial lens. Nat Mater 9:129–132

    Article  Google Scholar 

  42. Rahm M, Cummer SA, Schurig D, Pendry JB, Smith DR (2008) Optical design of reflectionless complex media by finite embedded coordinate transformations. Phys Rev Lett 100:63903

    Article  Google Scholar 

  43. Luo Y, Zhang J, Ran L, Chen H, Kong JA (2008) Controlling the emission of electromagnetic source. PIERS Online 4:795–800

    Article  Google Scholar 

  44. Luo Y, Zhang J, Ran L, Chen H, Kong JA (2008) New concept conformal antennas utilizing metamaterial and transformation optics. IEEE Antennas Wireless Propag Lett 7:509–512

    Article  Google Scholar 

  45. Popa BI, Allen J, Cummer SA (2009) Conformal array design with transformation electromagnetics. Appl Phys Lett 94:244102

    Article  Google Scholar 

  46. Allen J, Kundtz N, Roberts DA, Cummer SA, Smith DR (2009) Electromagnetic source transformations using superellipse equations. Appl Phys Lett 94:194101

    Article  Google Scholar 

  47. Ma YG, Ong CK, Tyc T, Leonhardt U (2009) An omnidirectional retroreflector based on the transmutation of dielectric singularities. Nat Mater 8:639–642

    Article  Google Scholar 

  48. Balanis CA (1997) Antenna theory: analysis and design, 2nd edn. Wiley, New York

    Google Scholar 

  49. Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microwave Theory Tech 47:2075–2084

    Article  Google Scholar 

  50. Schurig D, Mock JJ, Smith DR (2006) Electric-field-coupled resonators for negative permittivity metamaterials. Appl Phys Lett 88:041109

    Article  Google Scholar 

  51. Nicholson AM, Ross GF (1970) Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans Instrum Meas 19:377–382

    Article  Google Scholar 

  52. Tichit PH, Burokur SN, de Lustrac A (2011) Transformation media producing quasi-perfect isotropic emission. Opt Express 19:20551–20556

    Article  Google Scholar 

  53. Ghasemi R, Tichit PH, Degiron A, Lupu A, de Lustrac A (2010) Efficient control of a 3D optical mode using a thin sheet of transformation optical medium. Opt Express 18:20305–20312

    Article  Google Scholar 

  54. Lupu A, Dubrovina N, Ghasemi R, Degiron A, de Lustrac A (2011) Metal-dielectric metamaterials for guided wave silicon photonics. Opt Express 19:24746–24761

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank D. Germain, A. Sellier, X. Wu, and S. Kirouane for their help in the realization and characterization of the prototypes in this study. They also thank the French National Research Agency for its financial support through the METAPHORT, METAVEST, and METAPHOTONIQUE projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André de Lustrac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

de Lustrac, A., Burokur, S.N., Tichit, PH. (2014). Transformation Electromagnetics and Non-standard Devices. In: Werner, D., Kwon, DH. (eds) Transformation Electromagnetics and Metamaterials. Springer, London. https://doi.org/10.1007/978-1-4471-4996-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4996-5_14

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4995-8

  • Online ISBN: 978-1-4471-4996-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics