Skip to main content

Broadening of Cloaking Bandwidth by Passive and Active Techniques

Abstract

This chapter deals with the most serious drawback of transformation electromagnetic-based cloaking devices: narrow operating bandwidth (BW). It is shown that the maximal operating BW of every passive cloak is limited by the basic background physics (so-called energy-dispersion constraints). It is also shown possible to optimize the cloak parameters in order to achieve either the maximal BW or the maximal invisibility gain (IG). Finally, it is shown possible to go around the dispersion-energy constraints by inclusion of non-Foster active components, and to achieve a very broad operating BW that fairly exceeds the BW of passive cloaks.

Keywords

  • Scattered Field
  • Constitutive Parameter
  • Effective Permittivity
  • Permittivity Tensor
  • Negative Capacitance

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4471-4996-5_12
  • Chapter length: 46 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-4471-4996-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 12.1
Fig. 12.2
Fig. 12.3
Fig. 12.4
Fig. 12.5
Fig. 12.6
Fig. 12.7
Fig. 12.8
Fig. 12.9
Fig. 12.10
Fig. 12.11
Fig. 12.12
Fig. 12.13
Fig. 12.14
Fig. 12.15
Fig. 12.16
Fig. 12.17
Fig. 12.18
Fig. 12.19
Fig. 12.20
Fig. 12.21
Fig. 12.22
Fig. 12.23
Fig. 12.24
Fig. 12.25
Fig. 12.26
Fig. 12.27
Fig. 12.28
Fig. 12.29
Fig. 12.30
Fig. 12.31
Fig. 12.32
Fig. 12.33
Fig. 12.34
Fig. 12.35
Fig. 12.36
Fig. 12.37
Fig. 12.38
Fig. 12.39
Fig. 12.40

References

  1. Dollin LS (1961) On the possibility of comparison of three-dimensional electromagnetic systems with nonuniform anisotropic filling. Izv VUZov Radiofizika 4(5):964–967

    Google Scholar 

  2. Kerker M (1975) Invisible bodies. J Opt Soc Am 65:376–379

    CrossRef  Google Scholar 

  3. Edwards B, Alu A, Silveirinha MG, Engheta N (2009) Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. Phys Rev Lett 103:153901

    CrossRef  Google Scholar 

  4. Alu A, Engheta N (2005) Achieving transparency with plasmonic and metamaterial coatings. Phys Rev E72:016623

    Google Scholar 

  5. Schurig D, Mock JJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977–980. doi:10.1126/science.1133628

    CrossRef  Google Scholar 

  6. Kanté B, Germain D, de Lustrac A (2009) Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies. Phys Rev B 80:201104

    CrossRef  Google Scholar 

  7. Ivsic B, Sipus Z, Hrabar S (2009) Analysis of uniaxial multilayer cylinders used for invisible cloak realization. IEEE Trans Antennas Propag 57:1521–1526. doi:10.1109/TAP.2009.2016695

    MathSciNet  CrossRef  Google Scholar 

  8. Kildal PS, Kishk AA, Tengs A (1996) Reduction of forward scattering from cylindrical objects using hard surfaces. IEEE Trans Antennas Propag 44:1509–1520

    CrossRef  Google Scholar 

  9. Silveirinha MG, Alu A, Engheta N (2007) Parallel-plate metamaterials for cloaking structures. Phys Rev E 75:036603

    CrossRef  Google Scholar 

  10. Tretyakov S, Alitalo P, Luukkonen O, Simovski C (2009) Broadband electromagnetic cloaking of long cylindrical objects. Phys Rev Lett 103:103905

    CrossRef  Google Scholar 

  11. Kahn WK, Kurss H (1965) Minimum-scattering antennas. IEEE Trans Antennas Propag 13:671–675

    CrossRef  Google Scholar 

  12. Alexopoulos NG, Uzunoglu NK (1978) Electromagnetic scattering from active objects: invisible scatterers. Appl Opt 17:235–239

    Google Scholar 

  13. Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312:1780–1782. doi:10.1126/science.1125907

    MathSciNet  MATH  CrossRef  Google Scholar 

  14. Cai W, Chettiar UK, Kildishev AV, Shalaev VM (2007) Optical cloaking with non-magnetic metamaterials. Nat Photonics 1:224–227

    CrossRef  Google Scholar 

  15. Kanté B, de Lustrac A, Lourtioz JM, Burokur SN (2008) Infrared cloaking based on the electric response of split ring resonators. Opt Express 16:9191–9198

    CrossRef  Google Scholar 

  16. Hrabar S (2006) Waveguide experiments to characterize the properties of SNG and DNG metamaterials. In: Physics and engineering explorations, Wiley and IEEE

    Google Scholar 

  17. Engheta N, Ziolkowski RW (2008) Metamaterials: Physics and engineering explorations. Wiley, New Jersey

    Google Scholar 

  18. Eleftheriades GV, Balmain KG (2005) Negative-refraction metamaterials: fundamental principles and applications. Wiley, New Jersey

    CrossRef  Google Scholar 

  19. Caloz C, Itoh T (2006) Electromagnetic MTMs: transmission line theory and ticrowave applications. Wiley, New Jersey

    Google Scholar 

  20. Hrabar S, Bartolic J, Sipus Z (2007) Re to: comments on waveguide miniaturization using uniaxial negative permeability metamaterial. IEEE Trans Antennas Propag 55:1017–1018

    CrossRef  Google Scholar 

  21. Auzanneau F, Ziolkowski RW (1998) Theoretical study of synthetic bianisotropic materials. J Electromagn Waves Apps 12(3):353–370

    CrossRef  Google Scholar 

  22. Ziolkowski RW (1997) The design of Maxwellian absorbers for numerical boundary conditions and for practical applications using engineered artificial materials. IEEE Trans Antennas Propag 45:656–671

    CrossRef  Google Scholar 

  23. Zhang S, Fan W, Panoiu NC, Malloy KJ, Osgood M, Brueck DR (2006) Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks. Opt Exp 14:6778–6787

    Google Scholar 

  24. Knott EF, Shaeffer JF, Tuley MT (2004) Radar cross section. SciTech Publishing Inc, New York

    Google Scholar 

  25. Sipus Z, Kildal PS, Leijon R, Johansson M (1998) An algorithm for calculating green’s functions for planar, circular cylindrical and spherical multilayer substrates. ACES J 13:243–254

    Google Scholar 

  26. Bojanjac D, Sipus Z (2012) Oblique incidence performance of anisotropic cylindrical structures used for invisibility cloak design. IEEE Trans Antennas Propag 60:4814–4821

    Google Scholar 

  27. Hrabar S, Benic L, Bartolic J (2006) Simple experimental determination of complex permittivity or complex permeability of SNG metamaterials. In: Proceedings on 36th European microwave conference 2006, pp 1395–1398

    Google Scholar 

  28. Liang Z, Yao P, Sun X, Jiang X (2008) The physical picture and the essential elements of the dynamical process for dispersive cloak structures. App Phys Lett 92:131118

    CrossRef  Google Scholar 

  29. Kundtz N, Gaultney D, Smith DR (2010) Scattering cross-section of a transformation optics-based metamaterial cloak. New J Phys 15:043039

    Google Scholar 

  30. Popa BI, Cummer SA (2009) Cloaking with optimized homogeneous anisotropic layers. Phys Rev A 79:023806

    CrossRef  Google Scholar 

  31. Yu Z, Feng Y, Xu X, Zhao J, Jiang T (2011) Optimized cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials. J Phys D Appl Phys 44:185102

    CrossRef  Google Scholar 

  32. Komljenovic T, Sipus Z (2011) Optimizing electromagnetic problems at University of Zagreb—an overview. In: Proceedings of ELMAR 2011, pp 353–356

    Google Scholar 

  33. Ivsic B, Komljenovic T, Sipus Z (2010) Optimization of uniaxial multilayer cylinders used for invisible cloak realization. IEEE Trans Antennas Propag 58:3397–3401. doi:10.1109/TAP.2010.2055789

    CrossRef  Google Scholar 

  34. Robinson J, Rahmat-Samii Y (2004) Particle swarm optimization in electromagnetics. IEEE Trans Antennas Propag 52(2):397–407

    MathSciNet  CrossRef  Google Scholar 

  35. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE conference on neural networks IV, Piscataway

    Google Scholar 

  36. Chen H, Liang Z, Yao P, Jiang X, Ma H, Chan T (2007) Extending the bandwidth of electromagnetic cloaks. Phys Rev B76:241104

    Google Scholar 

  37. Hrabar S, Krois I, Matvijev M (2009) Is it possible to overcome basic dispersion constraints and achieve broadband cloaking? In: Proceedings on 3rd international congress on advanced electromagnetic—materials in microwaves and optics, pp 408–410

    Google Scholar 

  38. Liu X, Li C, Yao K, Meng X, Li F (2009) Invisibility cloaks modeled by anisotropic MTM based on inductor- capacitor networks. IEEE Trans Antennas Propag 8:1154–1157. doi:10.1109/LAWP.2009.2034675

    CrossRef  Google Scholar 

  39. Zedler Elefteriades GV (2011) Anisotropic transmission line metamaterials for 2-D transformation optics applications. Proc of the IEE 10:1634–1645

    CrossRef  Google Scholar 

  40. Gok G, Grbic A (2010) Tensor transmission line metamaterials. IEEE Trans Antennas Propag 58:5

    CrossRef  Google Scholar 

  41. Alitalo P, Ranvier S, Vehmas J, Tretyakov S (2008) A microwave transmission line network guiding electromagnetic fields through a dense array of metallic objects. Metamaterials 2(4):206–212. doi:10.1016/j.metmat.2008.09.001

    CrossRef  Google Scholar 

  42. Alitalo P, Bongard F, Zürcher JF, Mosig J, Tretyakov S (2009) Experimental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission line networks. Appl Phys Lett 94:014103

    CrossRef  Google Scholar 

  43. Hrabar S, Bonefacic D, Muha D (2008) ENZ-based shortened horn antenna—an experimental study. Antennas and propagation society international symposium. doi:10.1109/APS.2008.4619853

  44. Rotman W (1962) Plasma simulation by artificial dielectrics and parallel plate media. IRE Tran Antennas Propag 10:82–95

    CrossRef  Google Scholar 

  45. Linvill JG (1953) Transistor negative impedance converters. Proc IRE 41:725–729

    CrossRef  Google Scholar 

  46. Skahill, G, Ruish RM et al (1998) Electrically small, efficient, wide-band, low-noise antenna elements. In: Proceedings on the 1998 antenna applications symposium, pp 213–214

    Google Scholar 

  47. Aberle J, Lomak R (2007) Antennas with non-Foster matching networks. Morgan & Claypool, San Rafael

    Google Scholar 

  48. Sussman-Fort SE (2006) Matching network design using non-Foster impedances. Int J RF Microw CAE 16(2):135–142

    CrossRef  Google Scholar 

  49. Sussman-Fort SE (2009) Non-Foster impedance matching of electrically-small antennas. IEEE Trans Antennas Propag 57(8):2230–2241

    CrossRef  Google Scholar 

  50. Perry AK (1973) Broadband antenna systems realized from active circuit conjugate impedance matching. Naval Postgraduate School, Monterey

    Google Scholar 

  51. Leifso CR (2000) Design and analysis of novel RF active impedance synthesizing circuits. Ph.D. thesis, Department of Electrical and Computer Engineering, University of Calgary

    Google Scholar 

  52. Leifso CR, Hasett, JW (2001) Active tunable inductor. US Patent, Patent No: US 6,211,753 B1

    Google Scholar 

  53. Hrabar S, Krois I, Kiricenko A (2010) Towards active dispersionless ENZ metamaterial for cloaking applications. Metamaterials 4(2–3):89–97

    CrossRef  Google Scholar 

  54. Hrabar S, Krois I, Bonic I, Kiricenko A, Ugante Munoz E (2010) Active broadband ENZ and MNZ metamaterials. AFRL and The European Office of Aerospace Research and Development (EOARD), contract FA8655-10-1-3030, final report

    Google Scholar 

  55. Pozar DM (2005) Microwave engineering, 3rd edn. Wiley, New Jersey

    Google Scholar 

  56. Sussman-Fort SE (1998) Gyrator-based biquad filters and negative impedance converters for microwaves. Int J RF Microw CAE 8:86–101

    Google Scholar 

  57. Kolev S, Delacressonniere B, Gautier J (2001) Using a negative capacitance to increase the tuning range of a varactor diode in MMIC technology. IEEE Trans Micro Theor Tech 49(12):2425–2430

    CrossRef  Google Scholar 

  58. Park H, Lee S, Lee J, Sangwoo N (2009) A 0.1–1 GHz CMOS variable gain amplifier using wideband negative capacitance. IECE Trans Electron 92(10):1311–1314

    Google Scholar 

  59. Kwisung Y, Mohammed M et al (2007) Negative impedance circuit and its application to inductorless resonant oscillators. In: Proceedings of international SOC conference in Seoul 2007, pp 13–16

    Google Scholar 

  60. Ugarte-Munoz E, Hrabar S, Segovia-Vargas D (2011), Investigation of stability of negative impedances in active metamaterials and antennas. In: Proceedings on Eucap 2011, pp 2059–2063

    Google Scholar 

  61. Hrabar S (2012) Active non-Foster metamaterials: from intriguing background physics to real-world applications. Metamaterials 2012, plenary talk, Sankt Petersburg

    Google Scholar 

  62. Hrabar S, Krois I, Bonic I, KiricenkoA (2011) Negative capacitor paves the way to ultra-broadband metamaterials. Appl Phys Lett 99 25:254103–254104. doi:10.1063/1.3671366

    Google Scholar 

  63. Hrabar S, Malcic I, Nanut S, Juricev-Sudac L (2010) Feasibility of use of lumped elements in anisotropic 2D cloak. In: IEEE ICECom, 2010 conference proceedings, pp 1–4. 978-9-5360-3758-2

    Google Scholar 

  64. Hrabar S, Malcic I (2011) Bandwidth analysis of lumped-element-based planar anisotropic cloak. In: IEEE proceedings of the 5th E conference on antennas and propagation (EUCAP), pp 840–841. 978-1-4577-0250-1

    Google Scholar 

  65. Malcic I, Hrabar S, Juricev-Sudac L (2011) Numerical analysis of a lumped-element-based planar anisotropic cloak. In: IEEE ELMAR, 2011 proceedings, pp 369–372. 978-953-7044-12-1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio Hrabar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Hrabar, S., Sipus, Z., Malcic, I. (2014). Broadening of Cloaking Bandwidth by Passive and Active Techniques. In: Werner, D., Kwon, DH. (eds) Transformation Electromagnetics and Metamaterials. Springer, London. https://doi.org/10.1007/978-1-4471-4996-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4996-5_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4995-8

  • Online ISBN: 978-1-4471-4996-5

  • eBook Packages: EngineeringEngineering (R0)