Skip to main content

Experimental Characterization of Electromagnetic Cloaking Devices at Microwaves

  • Chapter
  • First Online:
Transformation Electromagnetics and Metamaterials

Abstract

Electromagnetic cloaking has attracted much interest in recent years. In this chapter, we will describe experimental methods that can be applied to the analysis of electromagnetic cloaks in the microwave regime. Each method is explained and accompanied with real-life examples. At the end of the chapter, we also discuss experimental techniques for characterization of individual small particles (“artificial molecules”) which are useful in the design of various cloaks or low-scattering objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leonhardt U (2006) Optical conformal mapping. Science 312:1777–1780

    Article  MathSciNet  MATH  Google Scholar 

  2. Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312:1780–1782

    Article  MathSciNet  MATH  Google Scholar 

  3. Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977–980

    Article  Google Scholar 

  4. Cummer S, Popa B-I, Schurig D, Smith DR, Pendry JB (2006) Full-wave simulations of electromagnetic cloaking structures. Phys Rev E 74:036621

    Article  Google Scholar 

  5. Cai W, Chettiar UK, Kildishev AV, Shalaev VM (2007) Optical cloaking with metamaterials. Nature Photonics 1:224–227

    Article  Google Scholar 

  6. Zhang B, Chen H, Wu B-I, Luo Y, Ran L, Kong JA (2007) Response of a cylindrical invisibility cloak to electromagnetic waves. Phys Rev B 76:121101(R)

    Google Scholar 

  7. Yan M, Ruan Z, Qiu M (2007) Cylindrical invisibility cloak with simplified material parameters is inherently visible. Phys Rev Lett 99:233901

    Article  Google Scholar 

  8. Gaillot DP, Croenne C, Zhang F, Lippens D (2008) Transformation optics for the full dielectric electromagnetic cloak and metaldielectric planar hyperlens. New J Phys 10:115039

    Article  Google Scholar 

  9. Liu R, Ji C, Mock JJ, Chin JY, Cui TJ, Smith DR (2009) Broadband ground-plane cloak. Science 323:366–369

    Article  Google Scholar 

  10. Ergin T, Stenger N, Brenner P, Pendry JB, Wegener M (2010) Three-dimensional invisibility cloak at optical wavelengths. Science 328:337–339

    Article  Google Scholar 

  11. Kundtz N, Gaultney D, Smith DR (2010) Scattering cross-section of a transformation optics-based metamaterial cloak. New J Phys 12:043039

    Article  Google Scholar 

  12. Li C, Liu X, Li F (2010) Experimental observation of invisibility to a broadband electromagnetic pulse by a cloak using transformation media based on inductor-capacitor networks. Phys Rev B 81:115133

    Article  Google Scholar 

  13. Yang C, Yang J, Huang M, Xiao Z, Peng J (2011) An external cloak with arbitrary cross section based on complementary medium and coordinate transformation. Opt Expr 19:1147–1157

    Article  Google Scholar 

  14. Castaldi G, Gallina I, Galdi V, Alù A, Engheta N (2011) Analytical study of spherical cloak/anti-cloak interactions. Wave Motion 48:455–467

    Article  MathSciNet  Google Scholar 

  15. Zedler M, Eleftheriades GV (2011) Anisotropic transmission-line metamaterials for 2-D transformation optics applications. Proc IEEE 99:1634–1645

    Article  Google Scholar 

  16. Alù A, Engheta N (2005) Achieving transparency with plasmonic and metamaterial coatings. Phys Rev E 72:016623

    Article  Google Scholar 

  17. Alù A, Engheta N (2008) Plasmonic and metamaterial cloaking: physical mechanisms and potentials. J Opt A 10:093002

    Article  Google Scholar 

  18. Edwards B, Alù A, Silveirinha MG, Engheta N (2009) Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. Phys Rev Lett 103:153901

    Article  Google Scholar 

  19. Alù A, Engheta N (2008) Multifrequency optical invisibility cloak with layered plasmonic shells. Phys Rev Lett 100:113901

    Article  Google Scholar 

  20. Bilotti F, Tricarico S, Vegni L (2008) Electromagnetic cloaking devices for TE and TM polarizations. New J Phys 10:115035

    Article  Google Scholar 

  21. Alù A, Engheta N (2009) Cloaking a sensor. Phys Rev Lett 102:233901

    Article  Google Scholar 

  22. Alù A, Engheta N (2010) Cloaked near-field scanning optical microscope tip for noninvasive near-field imaging. Phys Rev Lett 105:263906

    Article  Google Scholar 

  23. Bilotti F, Tricarico S, Vegni L (2010) Plasmonic metamaterial cloaking at optical frequencies. IEEE Trans Nanotechnology 9:55–61

    Article  Google Scholar 

  24. Tricarico S, Bilotti F, Alù A, Vegni L (2010) Plasmonic cloaking for irregular objects with anisotropic scattering properties. Phys Rev E 81:026602

    Article  Google Scholar 

  25. Bilotti F, Pierini F, Vegni L (2011) Employment of metamaterial cloaks to enhance the resolution of near-field scanning optical microscopy systems based on aperture tips. Metamaterials 5:119–124

    Article  Google Scholar 

  26. Alitalo P, Luukkonen O, Jylhä L, Venermo J, Tretyakov SA (2008) Transmission-line networks cloaking objects from electromagnetic fields. IEEE Trans Antennas Propagat 56:416–424

    Article  Google Scholar 

  27. Alitalo P, Tretyakov S (2009) Electromagnetic cloaking with metamaterials. Materials Today 12:22–29

    Article  Google Scholar 

  28. Alitalo P, Tretyakov SA (2011) Broadband electromagnetic cloaking realized with transmission-line and waveguiding structures. Proc IEEE 99:1646–1659

    Article  Google Scholar 

  29. Tretyakov S, Alitalo P, Luukkonen O, Simovski C (2009) Broadband electromagnetic cloaking of long cylindrical objects. Phys Rev Lett 103:103905

    Article  Google Scholar 

  30. Alitalo P, Tretyakov SA (2010) Electromagnetic cloaking of strongly scattering cylindrical objects by a volumetric structure composed of conical metal plates. Phys Rev B 82:245111

    Article  Google Scholar 

  31. Smolyaninov II, Smolyaninova VN, Kildishev AV, Shalaev VM (2009) Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking. Phys Rev Lett 102:213901

    Article  Google Scholar 

  32. Kildal P-S, Kishk AA, Tengs A (1996) Reduction of forward scattering from cylindrical objects using hard surfaces. IEEE Trans Antennas Propagat 44:1509–1520

    Article  Google Scholar 

  33. Hakansson A (2007) Cloaking of objects from electromagnetic fields by inverse design of scattering optical elements. Opt Exp 15:4328–4334

    Article  Google Scholar 

  34. Milton GW, Nicorovici N-AP (2006) On the cloaking effects associated with anomalous localized resonance. Proc R Soc A 462:3027–3059

    Article  MathSciNet  MATH  Google Scholar 

  35. Milton G, Nicorovici N-A, McPhedran R, Cherednichenko K, Jacob Z (2008) Solutions in folded geometries and associated cloaking due to anomalous resonance. New J Phys 10:115021

    Article  Google Scholar 

  36. Chen H, Chan CT, Sheng P (2010) Transformation optics and metamaterials. Nature Materials 9:387–396

    Article  Google Scholar 

  37. Guenneau S, McPhedran RC, Enoch S, Movchan AB, Farhat M, Nicorovici N-AP (2011) The colours of cloaks. J Opt 13:024014

    Article  Google Scholar 

  38. Alitalo P, Ranvier S, Vehmas J, Tretyakov S (2008) A microwave transmission-line network guiding electromagnetic fields through a dense array of metallic objects. Metamaterials 2:206–212

    Article  Google Scholar 

  39. Guven K, Saenz E, Gonzalo R, Ozbay E, Tretyakov S (2008) Electromagnetic cloaking with canonical spiral inclusions. New J Phys 10:115037

    Article  Google Scholar 

  40. Maslovski S, Tretyakov SA, Alitalo P (2004) Near-field enhancement and imaging in double planar polariton-resonant structures. J Appl Phys 96:1293–1300

    Article  Google Scholar 

  41. Alitalo P, Maslovski S, Tretyakov S (2006) Near-field enhancement and imaging in double cylindrical polariton-resonant structures: enlarging superlens. Phys Lett A 357:397–400

    Article  Google Scholar 

  42. Alitalo P, Bongard F, Zürcher J-F, Mosig J, Tretyakov S (2009) Experimental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks. Appl Phys Lett 94:014103

    Article  Google Scholar 

  43. Alitalo P, Kettunen H, Tretyakov S (2010) Cloaking a metal object from an electromagnetic pulse: a comparison between various cloaking techniques. J Appl Phys 107:034905

    Article  Google Scholar 

  44. Alitalo P, Tretyakov SA (2012) Numerical modeling and characterization of selected electromagnetic cloaking structures. International Journal of RF and Microwave Computer-Aided Engineering 22:483–495

    Article  Google Scholar 

  45. Homepage of Ansys HFSS: http://www.ansoft.com/products/hf/hfss/

  46. Alitalo P, Culhaoglu AE, Osipov AV, Thurner S, Kemptner E, Tretyakov SA (2012) Bistatic scattering characterization of a three-dimensional broadband cloaking structure. J Appl Phys 111:034901

    Article  Google Scholar 

  47. Kante B, Germain D, de Lustrac A (2009) Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies. Phys Rev B 80:201104(R)

    Google Scholar 

  48. Rainwater D, Kerkhoff A, Melin K, Soric JC, Moreno G, Alù A (2012) Experimental verification of three-dimensional plasmonic cloaking in free-space. New J Phys 14:013054

    Article  Google Scholar 

  49. Alitalo P, Culhaoglu AE, Osipov AV, Thurner S, Kemptner E, Tretyakov SA (2012) Experimental characterization of a broadband transmission-line cloak in free space. IEEE Trans Antennas Propagat 60(10):4963–4968

    Article  MathSciNet  Google Scholar 

  50. Bowman JJ, Senior TBA, Uslenghi PLE (eds) (1969) Electromagnetic and acoustic scattering by simple shapes. North-Holland Publishing Company, Amsterdam

    Google Scholar 

  51. Vehmas J, Alitalo P, Tretyakov SA (2012) Experimental demonstration of antenna blockage reduction with a transmission-line cloak. IET Microw Antennas Propagat 6:830–834

    Article  Google Scholar 

  52. Serdyukov AN, Semchenko IV, Tretyakov SA, Sihvola A (2001) Electromagnetics of bi-anisotropic materials: theory and applications. Gordon and Breach Science Publishers, Amsterdam

    Google Scholar 

  53. Tretyakov SA, Mariotte F, Simovski CR, Kharina TG, Heliot J-P (1996) Analytical antenna model for chiral scatterers: comparison with numerical and experimental data. IEEE Trans Antennas Propagat 44:1006–1014

    Article  Google Scholar 

  54. Collin RE (2001) Foundations for Microwave Engineering, 2nd edn. IEEE Press, New York

    Book  Google Scholar 

  55. Belov PA, Simovski CR (2005) Homogenization of electromagnetic crystals formed by uniaxial resonant scatterers. Phys Rev E 72:026615

    Article  Google Scholar 

  56. Belov PA, Simovski CR (2005) Subwavelength metallic waveguides loaded by uniaxial resonant scatterers. Phys Rev E 72:036618

    Article  Google Scholar 

  57. Tretyakov S (2003) Analytical Modeling in Applied Electromagnetics. Artech House, Norwood

    MATH  Google Scholar 

  58. Maslovski S, Ikonen P, Kolmakov I, Tretyakov S, Kaunisto M (2005) Artificial magnetic materials based on the new magnetic particle: metasolenoid. Progress in Electromagnetics Research 54:61–81

    Article  Google Scholar 

  59. Tretyakov SA, Maslovski SI, Nefedov IS, Viitanen AJ, Belov PA, Sanmartin A (2003) Artificial tellegen particle. Electromagnetics 23:665–680

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei A. Tretyakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Alitalo, P., Tretyakov, S.A. (2014). Experimental Characterization of Electromagnetic Cloaking Devices at Microwaves. In: Werner, D., Kwon, DH. (eds) Transformation Electromagnetics and Metamaterials. Springer, London. https://doi.org/10.1007/978-1-4471-4996-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4996-5_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4995-8

  • Online ISBN: 978-1-4471-4996-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics