Skip to main content

Quasi-Conformal Approaches for Two and Three-Dimensional Transformation Optical Media

  • Chapter
  • First Online:
Book cover Transformation Electromagnetics and Metamaterials

Abstract

Transformation optical design is generally complicated by the requirement for highly anisotropic and inhomogeneous constituent materials. Quasi-conformal mappings have appeared as an attractive subset of the general transformation optics method because they only require isotropic, dielectric-only materials. In this chapter, we examine the quasi-conformal method as it applies to transformation optics and show that while it does significantly ease the burden of material design and fabrication, it may also create severely aberrant behavior unless caution is taken. We also show how to extend the method to three dimensions, and examine the performance of an optic designed with the quasi-conformal method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    COMSOL is a multi physics simulation suite based on the finite element method (FEM). In addition to multiple physics models (e.g., electromagnetics), COMSOL allows the user to choose from a number of classical PDE models—including Laplace’s equation. COMSOL also allows the user to generate new physics models or modify existing templates; a feature we exploit in Sect. 1.8.

  2. 2.

    Rigorously, the slipping boundary condition should be applied to all boundaries as specified in the last section. However, there is little practical difference between this and Dirichlet boundary conditions on the boundaries that are removed from the perturbation.

  3. 3.

    We will explore the impact these methods have on lens performance in Sect. 1.7.

  4. 4.

    Unlike in ray-tracing, we found no significant difference between the strictly conformal—and the quasi-conformal mapped—lenses since the RMS spot size of both lenses lies below the diffraction limit in the simulated range of aperture sizes.

References

  1. Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312:1780–1782. doi:10.1126/science.1125907

    Article  MathSciNet  MATH  Google Scholar 

  2. Schurig D, Pendry JB, Smith DR (2007) Transformation-designed optical elements. Opt Express 15:14772–14782

    Article  Google Scholar 

  3. Liu R, Ji C, Mock JJ, Chin JY, Cui TJ, Smith DR (2009) Broadband ground-plane cloak. Science 323:366–369. doi:10.1126/science.1166949

    Article  Google Scholar 

  4. Kundtz N, Smith DR (2010) Extreme-angle broadband metamaterial lens. Nat Mater 9:129–132. doi:10.1038/Nmat2610

    Article  Google Scholar 

  5. Hunt J, Kundtz N, Landy N, Nguyen V, Perram T, Starr A, Smith DR (2011) Broadband wide angle lens implemented with dielectric metamaterials. Sensors-Basel 11:7982–7991. doi:10.3390/S110807982

    Article  Google Scholar 

  6. Hunt J, Jang G, Smith DR (2011) Perfect relay lens at microwave frequencies based on flattening a maxwell lens. J Opt Soc Am B 28:2025–2029

    Article  Google Scholar 

  7. Valentine J, Li JS, Zentgraf T, Bartal G, Zhang X (2009) An optical cloak made of dielectrics. Nat Mater 8:568–571. doi:10.1038/Nmat2461

    Article  Google Scholar 

  8. Gabrielli LH, Cardenas J, Poitras CB, Lipson M (2009) Silicon nanostructure cloak operating at optical frequencies. Nat Photonics 3:461–463. doi:10.1038/Nphoton.2009.117

    Article  Google Scholar 

  9. Gharghi M, Gladden C, Zentgraf T, Liu YM, Yin XB, Valentine J, Zhang X (2011) A carpet cloak for visible light. Nano Lett 11:2825–2828. doi:10.1021/Nl201189z

    Article  Google Scholar 

  10. Hunt J, Tyler T, Dhar S, Tsai YJ, Bowen P, Larouche S, Jokerst NM, Smith DR (2012) Planar, flattened Luneburg lens at infrared wavelengths. Opt Express 20:1706–1713

    Article  Google Scholar 

  11. Ma HF, Cui TJ (2010) Three-dimensional broadband ground-plane cloak made of metamaterials. Nat Commun 1:21. doi:10.1038/Ncomms1023

    Google Scholar 

  12. Ma HF, Cui TJ (2010) Three-dimensional broadband and broad-angle transformation-optics lens. Nat Commun 1:124. doi:10.1038/Ncomms1126

    Article  Google Scholar 

  13. Fischer J, Ergin T, Wegener M (2011) Three-dimensional polarization-independent visible-frequency carpet invisibility cloak. Opt Lett 36:2059–2061

    Article  Google Scholar 

  14. Ergin T, Fischer J, Wegener M (2011) Three-dimensional invisibility carpet cloak at 700 nm wavelengths. In: 2011 Conference on lasers and electro-optics (Cleo)

    Google Scholar 

  15. Ergin T, Stenger N, Brenner P, Pendry JB, Wegener M (2010) Three-dimensional invisibility cloak at optical wavelengths. Science 328:337–339. doi:10.1126/science.1186351

    Article  Google Scholar 

  16. Xu HY, Zhang BL, Yu TY, Barbastathis G, Sun HD (2012) Dielectric waveguide bending adapter with ideal transmission: practical design strategy of area-preserving affine transformation optics. J Opt Soc Am B 29:1287–1290

    Article  Google Scholar 

  17. Zhang BL, Luo, YA, Liu XG, Barbastathis, G (2011) Macroscopic invisibility cloak for visible light. Phys Rev Lett 106:Artn 033901. doi:10.1103/Physrevlett.106.033901

  18. Chen XZ, Luo Y, Zhang JJ, Jiang K, Pendry JB, Zhang SA (2011) Macroscopic invisibility cloaking of visible light. Nat Commun 2:176. doi:10.1038/Ncomms1176

    Article  Google Scholar 

  19. Urzhumov Y, Chen WC, Bingham C, Padilla W, Smith DR (2012) Magnetic levitation of metamaterial bodies enhanced with magnetostatic surface resonances. Phys Rev B 85:054430. doi:10.1103/Physrevb.85.054430

    Article  Google Scholar 

  20. Leonhardt U (2006) Optical conformal mapping. Science 312:1777–1780. doi:10.1126/science.1126493

    Article  MathSciNet  MATH  Google Scholar 

  21. Turpin JP, Massoud AT, Jiang ZH, Werner PL, Werner DH (2010) Conformal mappings to achieve simple material parameters for transformation optics devices. Opt Express 18:244–252

    Article  Google Scholar 

  22. Urzhumov YA, Kundtz NB, Smith DR, Pendry JB (2011) Cross-section comparisons of cloaks designed by transformation optical and optical conformal mapping approaches. J Opt-Uk 13:024002. doi:10.1088/2040-8978/13/2/024002

    Article  Google Scholar 

  23. Rahm M, Cummer SA, Schurig D, Pendry JB, Smith DR (2008) Optical design of reflectionless complex media by finite embedded coordinate transformations. Phys Rev Lett 100:063903. doi:10.1103/Physrevlett.100.063903

    Article  Google Scholar 

  24. Thompson JF, Soni Bk, Weatherill NP (1999) Handbook of grid generation. CRC Press, Boca Raton

    MATH  Google Scholar 

  25. Li JS, Pendry JB (2008) Hiding under the carpet: a new strategy for cloaking. Phys Rev Lett 101:203901. doi:10.1103/Physrevlett.101.203901

    Article  Google Scholar 

  26. Knupp P, Steinberg S (1994) Fundamentals of grid generation. CRC Press, Boca Raton

    MATH  Google Scholar 

  27. Tang LL, Yin JC, Yuan GS, Du JL, Gao HT, Dong XC, Lu YG, Du CL (2011) General conformal transformation method based on Schwarz-Christoffel approach. Opt Express 19:15119–15126

    Article  Google Scholar 

  28. Chang Z, Zhou XM, Hu J, Hu GK (2010) Design method for quasi-isotropic transformation materials based on inverse Laplace’s equation with sliding boundaries. Opt Express 18:6089–6096

    Article  Google Scholar 

  29. Zhang BL, Chan T, Wu BI (2010) Lateral shift makes a ground-plane cloak detectable. Phys Rev Lett 104:233903. doi:10.1103/Physrevlett.104.233903

    Article  Google Scholar 

  30. Tang WX, Argyropoulos C, Kallos E, Song W, Hao Y (2010) Discrete coordinate transformation for designing all-dielectric flat antennas. Ieee T Antenn Propag 58:3795–3804. doi:10.1109/Tap.2010.2078475

    Article  Google Scholar 

  31. Kong FM, Wu BII, Kong JA, Huangfu JT, Xi S, Chen HS (2007) Planar focusing antenna design by using coordinate transformation technology. Appl Phys Lett 91:253509 10.1063/1.2826283

    Article  Google Scholar 

  32. Mei ZL, Bai J, Cui TJ (2011) Experimental verification of a broadband planar focusing antenna based on transformation optics. New J Phys 13:063028. doi:10.1088/1367-2630/13/6/063028

    Article  Google Scholar 

  33. Garcia-Meca C, Martinez A, Leonhardt U (2011) Engineering antenna radiation patterns via quasi-conformal mappings. Opt Express 19:23743–23750

    Article  Google Scholar 

  34. Roberts DA, Rahm M, Pendry JB, Smith DR (2008) Transformation-optical design of sharp waveguide bends and corners. Appl Phys Lett 93:251111. doi:10.1063/1.3055604

    Article  Google Scholar 

  35. Rahm M, Roberts DA, Pendry JB, Smith DR (2008) Transformation-optical design of adaptive beam bends and beam expanders. Opt Express 16:11555–11567

    Article  Google Scholar 

  36. Landy NI, Padilla WJ (2009) Guiding light with conformal transformations. Opt Express 17:14872–14879

    Article  Google Scholar 

  37. Ma YG, Wang N, Ong CK (2010) Application of inverse, strict conformal transformation to design waveguide devices. J Opt Soc Am A 27:968–972

    Article  Google Scholar 

  38. Schurig D (2008) An aberration-free lens with zero F-number. New J Phys 10:115034. doi:10.1088/1367-2630/10/11/115034

    Article  Google Scholar 

  39. Luneburg RK, Herzberger M, Brown University. Graduate School (1944) Mathematical theory of optics. Providence, R.I

    Google Scholar 

  40. Smith DR, Urzhumov Y, Kundtz NB, Landy NI (2010) Enhancing imaging systems using transformation optics. Opt Express 18:21238–21251

    Article  Google Scholar 

  41. Driscoll T, Lipworth G, Hunt J, Landy N, Kundtz N, Basov DN, Smith DR (2012) Performance of a three dimensional transformation-optical-flattened Luneburg lens. Opt Express 20:13262–13273

    Article  Google Scholar 

  42. Birchenhall C (1994) Numerical recipes in C—the art of scientific computing. Econ J 104:725–726

    Article  Google Scholar 

  43. Sluijter M, de Boer DKG, Braat JJM (2008) General polarized ray-tracing method for inhomogeneous uniaxially anisotropic media. J Opt Soc Am A 25:1260–1273

    Article  Google Scholar 

  44. Sluijter M, de Boer DKG, Urbach HP (2009) Ray-optics analysis of inhomogeneous biaxially anisotropic media. J Opt Soc Am A 26:317–329

    Article  Google Scholar 

  45. Damaskos NJ, Maffett AL, Uslenghi PLE (1982) Dispersion-relation for general anisotropic media. Ieee T Antenn Propag 30:991–993

    Article  Google Scholar 

  46. Landy NI, Kundtz N, Smith DR (2010) Designing three-dimensional transformation optical media using quasiconformal coordinate transformations. Phys Rev Lett 105:193902. doi:10.1103/Physrevlett.105.193902

    Article  Google Scholar 

  47. Magnus F, Wood B, Moore J, Morrison K, Perkins G, Fyson J, Wiltshire MCK, Caplin D, Cohen LF, Pendry JB (2008) A d.c. magnetic metamaterial. Nat Mater 7:295–297. doi:10.1038/Nmat2126

    Article  Google Scholar 

  48. Wood B, Pendry JB (2007) Metamaterials at zero frequency. J Phys-Condens Mat 19:Artn 076208. doi:10.1088/0953-8984/19/7/076208

  49. Gutman AS (1954) Modified luneberg lens. J Appl Phys 25:855–859

    Article  MATH  Google Scholar 

  50. Morgan SP (1958) General solution of the luneberg lens problem. J Appl Phys 29:1358–1368

    Article  MathSciNet  MATH  Google Scholar 

  51. Schurig D, Pendry JB, Smith DR (2006) Calculation of material properties and ray tracing in transformation media. Opt Express 14:9794–9804

    Article  Google Scholar 

  52. Jacob Z, Alekseyev LV, Narimanov E (2007) Semiclassical theory of the Hyperlens. In: 2007 Conference on Lasers & electro-optics/quantum electronics and laser science (Cleo/Qels 2007), Vols 1–5, pp 2095–2096

    Google Scholar 

  53. Halimeh JC, Ergin T, Mueller J, Stenger N, Wegener M (2009) Photorealistic images of carpet cloaks. Opt Express 17:19328–19336

    Article  Google Scholar 

  54. Ergin T, Halimeh JC, Stenger N, Wegener M (2010) Optical microscopy of 3D carpet cloaks:ray-tracing calculations. Opt Express 18:20535–20545

    Article  Google Scholar 

  55. Urzhumov Y, Landy N, Smith DR (2012) Isotropic-medium three-dimensional cloaks for acoustic and electromagnetic waves. J Appl Phys 111:053105. doi:10.1063/1.3691242

    Article  Google Scholar 

  56. Balanis CA (1989) Advanced engineering electromagnetics. Wiley, New York

    Google Scholar 

  57. Andrease MG (1965) Scattering from bodies of revolution. Ieee T Antenn Propag 13:303–310

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nathan Landy or David R. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Landy, N., Urzhumov, Y., Smith, D.R. (2014). Quasi-Conformal Approaches for Two and Three-Dimensional Transformation Optical Media. In: Werner, D., Kwon, DH. (eds) Transformation Electromagnetics and Metamaterials. Springer, London. https://doi.org/10.1007/978-1-4471-4996-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4996-5_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4995-8

  • Online ISBN: 978-1-4471-4996-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics