Dialogue System Theory

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

A spoken dialogue system has a large number of complex problems to overcome. To simplify matters, two key assumptions are almost always taken. First, only dialogues with exactly two participants are considered and second, all interactions between the system and the user are in the form of turns

References

  1. Austin JL (1962) How to do things with words. Oxford University Press, New YorkGoogle Scholar
  2. Black AW, Lenzo KA (2001) FLite: a small fast run-time synthesis engine. In: ISCA tutorial and research workshop on speech, synthesisGoogle Scholar
  3. Bohus D, Horvitz E (2009) Models for multiparty engagement in open-world dialog. In: Proceedings of SIGDIAL, pp 225–234Google Scholar
  4. Bohus D, Rudnicky A (2003) Ravenclaw: dialog management using hierarchical task decomposition and an expectation agenda. In: Proceedings of EurospeechGoogle Scholar
  5. Bohus D, Rudnicky AI (2005) Constructing accurate beliefs in spoken dialog systems. In: Proceedings of ASRU, pp 272–277Google Scholar
  6. Bos J, Klein E, Lemon O, Oka T (2003) DIPPER: description and formalisation of an information-state update dialogue system architecture. In: Proceedings of SIGDIAL, pp 115–124Google Scholar
  7. Boyen X, Koller D (1998) Tractable inference for complex stochastic processes. In: Proceedings of uncertainty in AI. Morgan Kaufmann, San Francisco, pp 33–42Google Scholar
  8. Bui T, Poel M, Nijholt A, Zwiers J (2009) A tractable hybrid DDN-POMDP approach to affective dialogue modeling for probabilistic frame-based dialogue systems. Nat Lang Eng 15(2):273–307CrossRefGoogle Scholar
  9. Cassandra A, Littman ML, Zhang NL (1997) Incremental pruning: a simple, fast, exact method for partially observable Markov decision processes. In: Proceedings of uncertainty in AI, pp 54–61Google Scholar
  10. Clark RA, Richmond K, King S (2004) Festival 2-build your own general purpose unit selection speech synthesiser. In: Proceedings of the ISCA workshop on speech, synthesisGoogle Scholar
  11. Cuayhuitl H, Renals S, Lemon, Shimodaira OH (2007) Hierarchical dialogue optimization using semi-Markov decision processes. In: Proceedings of interspeechGoogle Scholar
  12. Denecke M, Dohsaka K, Nakano M (2005) Fast reinforcement learning of dialogue policies using stable function approximation. In: Proceedings of IJCNLP. Springer, Heidelberg, pp 1–11Google Scholar
  13. Doshi F, Roy N (2007) Efficient model learning for dialog management. In: Proceedings of the ACM/IEEE international conference on human-robot interaction, pp 65–72. ACM. ISBN 978-1-59593-617-2Google Scholar
  14. Evermann, G Woodland PC (2000) Large vocabulary decoding and confidence estimation using word posterior probabilities. In: Proceedings of ICASSPGoogle Scholar
  15. Fodor P, Huerta JM (2006) Planning and logic programming for dialog management. In: Proceedings of SLT, pp 214–217Google Scholar
  16. Goddeau D, Meng H, Polifroni J, Seneff S, Busayapongchai S (1996) A form-based dialogue manager for spoken language applications. In: Proceedings of ICSLPGoogle Scholar
  17. He Y, Young S (2006) Spoken language understanding using the hidden vector state model. Speech Commun 48(3–4):262–275CrossRefGoogle Scholar
  18. Heeman PA (2007) Combining reinforcement learning with information-state update rules. In: Proceedings of HLT/NAACL, pp 268–275Google Scholar
  19. Henderson J, Lemon O (2008) Mixture model POMDPs for efficient handling of uncertainty in dialogue management. In: Proceedings of ACL/HLT, pp 73–76. Association for Computational LinguisticsGoogle Scholar
  20. Henderson J, Lemon O, Georgila K (2005) Hybrid reinforcement/supervised learning for dialogue policies from communicator data. In: IJCAI workshop on knowledge and reasoning in practical dialogue systems, pp 68–75Google Scholar
  21. Horvitz E, Paek T (1999) A computational architecture for conversation. In: Proceedings of the seventh international conference on user modeling. Springer, Wien, pp 201–210Google Scholar
  22. Jiang H (2005) Confidence measures for speech recognition: a survey. Speech Commun 45(4):455–470CrossRefGoogle Scholar
  23. Jung S, Lee C, Kim K, Jeong M, Lee GG (2009) Data-driven user simulation for automated evaluation of spoken dialog systems. Comput Speech Lang 23(4):479–509CrossRefGoogle Scholar
  24. Jurcicek F, Gasic M, Keizer S, Mairesse F, Thomson B, Yu K, Young S (2009) Transformation-based learning for semantic parsing. In: Proceedings of SIGDIALGoogle Scholar
  25. Kaelbling LP, Littman ML, Cassandra AR (1998) Planning and acting in partially observable stochastic domains. Artif Intell 101(1–2):99–134MathSciNetMATHCrossRefGoogle Scholar
  26. Kim D, Sim HS, Kim KE, Kim JH, Kim H, Sung JW (2008) Effects of user modeling on POMDP-based dialogue systems. In: Proceedings of interspeechGoogle Scholar
  27. Larsson S, Traum DR (2001) Information state and dialogue management in the TRINDI dialogue move engine toolkit. Nat Lang Eng 6(3 &4):323–340Google Scholar
  28. Lefevre F, Gasic M, Jurcicek F, Keizer S, Mairesse F, Thomson B, Yu K, Young S (2009) k-nearest neighbor Monte-Carlo control algorithm for POMDP-based dialogue systems. In: Proceedings of SIGDIALGoogle Scholar
  29. Lemon O, Georgila K, Henderson J, Stuttle M (2006) An ISU dialogue system exhibiting reinforcement learning of dialogue policies: generic slot-filling in the TALK in-car system. In: Proceedings of EACLGoogle Scholar
  30. Levin E, Pieraccini R, Eckert W (2000) A stochastic model of human-machine interaction for learning dialog strategies. IEEE Trans Speech Audio Process 8(1):11–23CrossRefGoogle Scholar
  31. Levin E, Pieraccini R (1997) A stochastic model of computer-human interaction for learning dialogue strategies. In: Proceedings of EUROSPEECH, pp 1883–1886Google Scholar
  32. Litman DJ, Ros CP, Forbes-Riley K, VanLehn K, Bhembe D, Silliman S (2006) Spoken versus typed human and computer dialogue tutoring. Int J Artif Intell Educ 16(2):145–170Google Scholar
  33. Li L, Williams JD, Balakrishnan S (2009) Reinforcement learning for dialog management using least-squares policy iteration and fast feature selection. In: Proceedings of interspeechGoogle Scholar
  34. Mairesse F, Gasic M, Keizer FJ, Thomson B, Yu K, Young S (2009) Spoken language understanding from unaligned data using discriminative classification models. In: Proceedings of ICASSPGoogle Scholar
  35. Mairesse F, Walker M (2007) PERSONAGE: personality generation for dialogue. In: Proceedings of ACLGoogle Scholar
  36. McTear MF (1998) Modelling spoken dialogues with state transition diagrams: experiences with the CSLU toolkit. In: Proceedings of ICSLPGoogle Scholar
  37. Meng H, Wai C, Pieraccini R (2003) The use of belief networks for mixed-initiative dialog modeling. IEEE Trans Speech Audio Process 11(6):757–773CrossRefGoogle Scholar
  38. Paek T, Chickering D (2006) Evaluating the Markov assumption in Markov decision processes for spoken dialogue management. Lang Res Eval 40(1):47–66CrossRefGoogle Scholar
  39. Peters J, Schaal S (2008) Natural actor-critic. Neurocomputing 71:1180–1190CrossRefGoogle Scholar
  40. Peters J, Vijayakumar S, Schaal S (2005) Natural actor-critic. In: Proceedings of ECML. Springer, Heidelberg, pp 280–291Google Scholar
  41. Pieraccini R, Huerta JM (2008) Where do we go from here? In: Dybkjr L, Minker W (eds) Recent trends in discourse and dialogue. Text, speech and language technology, vol 39. Springer, HeidelbergGoogle Scholar
  42. Pietquin O, Renals S (2002) ASR system modeling for automatic evaluation and optimization of dialogue systems. In: Proceedings of ICASSP, pp 46–49Google Scholar
  43. Pulman S (1996) Conversational games, belief revision and Bayesian networks. In: Proceedings of the 7th computational linguistics in the Netherlands meetingGoogle Scholar
  44. Raux A, Bohus D, Langner B, Black AW, Eskenazi M (2006) Doing research on a deployed spoken dialogue system: one year of Let’s Go! experience. In: Proceedings of ICSLPGoogle Scholar
  45. Rich C, Sidner AL, Rich C, Sidner CL (1998) COLLAGEN: a collaboration manager for software interface agents. User Model User-Adapt Interact 8:315–350Google Scholar
  46. Roy N, Pineau J, Thrun S (2000) Spoken dialogue management using probabilistic reasoning. In: Proceedings of ACLGoogle Scholar
  47. Rudnicky A, Xu W (1999) An agenda-based dialog management architecture for spoken language systems. In: Proceedings of ASRUGoogle Scholar
  48. Schatzmann J, Weilhammer K, Stuttle M, Young S (2006) A survey of statistical user simulation techniques for reinforcement-learning of dialogue management strategies. Knowl Eng Rev 21(02):97–126CrossRefGoogle Scholar
  49. Schatzmann J, Stuttle MN, Weilhammer K, Young S (2005) Effects of the user model on simulation-based learning of dialogue strategies. In: Proceedings of ASRUGoogle Scholar
  50. Schatzmann J, Thomson B, Young S (2007a) Error simulation for training statistical dialogue systems. In: Proceedings of ASRU, pp 526–531Google Scholar
  51. Schatzmann J, Thomson B, Young S (2007b) Statistical user simulation with a hidden agenda. In: Procedings of SIGDIAL, pp 273–282Google Scholar
  52. Scheffler K (2007) Automatic design of spoken dialogue systems. Ph.D. thesis, University of CambridgeGoogle Scholar
  53. Scheffler K, Young S (2001) Corpus-based dialogue simulation for automatic strategy learning and evaluation. In: Proceedings of NAACLGoogle Scholar
  54. Searle JR (1969) Speech acts: an essay in the philosophy of language. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  55. Singh S, Litman D, Kearns M, Walker M (2002) Optimizing dialogue management with reinforcement learning: experiments with the NJFun system. J Artif Intell Res 16(1):105–133Google Scholar
  56. Sutton R, Barto A (1998) Reinforcement Learning: an introduction. Adaptive computation and machine learning. MIT Press, CambridgeGoogle Scholar
  57. Sutton S, Novick DG, Cole R, Vermeulen P, de Villiers J, Schalkwyk J, Fanty M (1996) Building 10,000 spoken dialogue systems. In: Proceedings of ICSLPGoogle Scholar
  58. Thomson B, Schatzmann J, Young S (2008) Bayesian update of dialogue state for robust dialogue systems. In: Proceedings of ICASSP, pp 4937–4940Google Scholar
  59. Traum DR (1999) Speech acts for dialogue agents. In: Wooldridge M, Rao A (eds) Foundation and theories of rational agents. Kluwer Academic, New York, pp 169–201Google Scholar
  60. Walker MA, Litman DJ, Kamm CA, Abella A (1997) PARADISE: a framework for evaluating spoken dialogue agents. In: Proceedings of ACL-EACL, pp 271–280Google Scholar
  61. Walker MA (2000) An application of reinforcement learning to dialogue strategy selection in a spoken dialogue system for email. J Artif Intell Res 12:387–416MATHGoogle Scholar
  62. Walker W, Lamere P, Kwok P, Raj B, Singh R, Gouvea R, Wolf P, Woelfel J (2004) Sphinx-4: a flexible open source framework for speech recognition. Technical Report TR-2004-139, Sun MicrosystemsGoogle Scholar
  63. Williams JD (2007a) Applying POMDPs to dialog systems in the troubleshooting domain. In: Proceedings of the HLT/NAACL workshop on bridging the gap: academic and industrial research in dialog technologyGoogle Scholar
  64. Williams JD (2007b) Using particle filters to track dialogue state. In: Proceedings of ASRUGoogle Scholar
  65. Williams JD (2008a) The best of both worlds: unifying conventional dialog systems and POMDPs. In: Proceedings of interspeechGoogle Scholar
  66. Williams JD (2008b) Integrating expert knowledge into POMDP optimization for spoken dialog systems. In: Proceedings of the AAAI workshop on advancements in POMDP solversGoogle Scholar
  67. Williams JD, Young S (2005) Scaling up POMDPs for dialog management: the “Summary POMDP" method. In: Proceedings of ASRU, pp 177–182Google Scholar
  68. Williams JD, Young S (2006) Scaling POMDPs for dialog management with composite summary point-based value iteration (CSPBVI). In: Proceedings of the AAAI workshop on statistical and empirical approaches for spoken dialogue systemsGoogle Scholar
  69. Williams JD, Young S (2007) Scaling POMDPs for spoken dialog management. IEEE Trans Audio Speech Lang Process 15:2116–2129CrossRefGoogle Scholar
  70. Wong YW, Mooney R (2007) Learning synchronous grammars for semantic parsing with lambda calculus. In: Proceedings of ACL, pp 960–967Google Scholar
  71. Young SJ, Williams JD, Schatzmann J, Stuttle MN, Weilhammer K (2005) The hidden information state approach to dialogue management. Technical Report CUED/FINFENG/TR.544, Cambridge University Engineering DepartmentGoogle Scholar
  72. Young S, Kershaw D, Odell J, Ollason D, Valtchev V, Woodland P (2000) The HTK book version 3.0. Cambridge University Press, CambridgeGoogle Scholar
  73. Young S, Gasic M, Keizer S, Mairesse F, Schatzmann J, Thomson B, Yu K (2009) The hidden information state model: a practical framework for POMDP-based spoken dialogue management. Comput Speech Lang 24:150–174. ISSN 08852308Google Scholar
  74. Zen H, Nose T, Yamagishi J, Sako S, Masuko T, Black AW, Tokuda K (2007) The HMM-based speech synthesis system (HTS) version 2.0. In: Proceedings of ISCA, pp 294–299Google Scholar
  75. Zettlemoyer L, Collins M (2007) Online learning of relaxed CCG grammars for parsing to logical form. In: Proceedings of EMNLP, pp 678–687Google Scholar
  76. Zhang B, Cai Q, Mao J, Chang E, Guo B (2001) Spoken dialogue management as planning and acting under uncertainty. In: Seventh European conference on speech communication and technologyGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of EngineeringUniversity of CambridgeCambridgeUK

Personalised recommendations