Advertisement

Introduction

  • Bo Shen
  • Zidong Wang
  • Huisheng Shu

Abstract

In Chap. 1, the research background on the filtering and control problems for nonlinear stochastic complex systems with incomplete information is introduced. The incomplete information under consideration mainly includes missing measurements, randomly varying sensor delays, signal quantization, sensor saturations, and signal sampling. With such incomplete information, the developments on various filtering and control issues are reviewed in great detail. In particular, the addressed nonlinear stochastic complex systems are comprehensive that include conventional nonlinear stochastic systems, different kinds of complex networks, and a large class of sensor networks. The corresponding filtering and control technologies for such nonlinear stochastic complex systems are then discussed. Finally, the outline of the book is listed.

Keywords

Sensor Network Linear Matrix Inequality Consensus Problem Complex Dynamical Network Packet Dropout 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Anderson, B.D.O., Moore, J.B.: Optimal Filtering. Prentice-Hall, Englewood Cliffs (1979) MATHGoogle Scholar
  2. 2.
    Ball, J.A., Helton, J.W., Walker, M.L.: H control for nonlinear systems with output feedback. IEEE Trans. Autom. Control 38(4), 546–559 (1993) MathSciNetMATHCrossRefGoogle Scholar
  3. 4.
    Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(15), 509–512 (1999) MathSciNetGoogle Scholar
  4. 5.
    Basin, M., Sanchez, E., Martinez-Zuniga, R.: Optimal filtering for linear systems over polynomial observations. Int. J. Innov. Comput. Inf. Control 4(2), 313–320 (2008) Google Scholar
  5. 6.
    Basin, M., Sanchez, E., Martinez-Zuniga, R.: Optimal linear filtering for systems with multiple state and observation delays. Int. J. Innov. Comput. Inf. Control 3(5), 1309–1320 (2008) Google Scholar
  6. 7.
    Berman, N., Shaked, U.: H control for discrete-time nonlinear stochastic systems. IEEE Trans. Autom. Control 51(6), 1041–1046 (2006) MathSciNetCrossRefGoogle Scholar
  7. 8.
    Berman, N., Shaked, U.: H -like control for nonlinear stochastic systems. Syst. Control Lett. 55(3), 247–257 (2006) MathSciNetMATHCrossRefGoogle Scholar
  8. 9.
    Bliman, P.A., Ferrari-Trecate, G.: Average consensus problems in networks of agents with delayed communications. Automatica 44(8), 1985–1995 (2008) MathSciNetCrossRefGoogle Scholar
  9. 10.
    Boukas, E.K., Liu, Z.-K.: Deterministic and Stochastic Time-Delay Systems. Birkhäuser, Boston (2002) MATHCrossRefGoogle Scholar
  10. 11.
    Brockett, R., Liberzon, D.: Quantized feedback stabilization of linear systems. IEEE Trans. Autom. Control 45(7), 1279–1289 (2000) MathSciNetMATHCrossRefGoogle Scholar
  11. 12.
    Buhmann, J., Schulten, K.: Influence of noise on the function of a ‘physiological’ neural network. Biol. Cybern. 56(5–6), 313–327 (1987) MathSciNetMATHCrossRefGoogle Scholar
  12. 13.
    Cao, J., Lu, J.: Adaptive synchronization of neural networks with or without time-varying delays. Chaos 16(1) (2006). Art. no. 013133, doi: 10.1063/1.2178448
  13. 14.
    Cao, Y., Lin, Z., Chen, B.: An output feedback H controller design for linear systems subject to sensor nonlinearities. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 50(7), 914–921 (2003) MathSciNetCrossRefGoogle Scholar
  14. 15.
    Cao, Y., Lin, Z., Ward, D.: An antiwindup approach to enlarging domain of attraction for linear systems subject to actuator saturation. IEEE Trans. Autom. Control 47(1), 140–145 (2002) MathSciNetCrossRefGoogle Scholar
  15. 16.
    Cao, Y., Lin, Z., Ward, D.: H antiwindup design for linear systems subject to input saturation. J. Guid. Control Dyn. 25(3), 455–463 (2002) CrossRefGoogle Scholar
  16. 17.
    Cattivelli, F.S., Lopes, C.G., Sayed, A.H.: Diffusion strategies for distributed Kalman filtering: formulation and performance analysis. In: Proc. Cognitive Information Processing, Santorini, Greece (2008) Google Scholar
  17. 18.
    Cattivelli, F.S., Sayed, A.H.: Diffusion mechanisms for fixed-point distributed Kalman smoothing. In: Proc. EUSIPCO, Lausanne, Switzerland (2008) Google Scholar
  18. 19.
    Charalambous, C.D.: Stochastic nonlinear minimax dynamic games with noisy measurements. IEEE Trans. Autom. Control 48(2), 261–266 (2003) MathSciNetCrossRefGoogle Scholar
  19. 20.
    Chen, T., Francis, B.A.: Linear time-varying H 2-optimal control of sampled-data systems. Automatica 27(6), 963–974 (1991) MathSciNetMATHCrossRefGoogle Scholar
  20. 21.
    Chen, T., Qiu, L.: H design of general multirate sampled-data control-systems. Automatica 30(7), 1139–1152 (1994) MathSciNetMATHCrossRefGoogle Scholar
  21. 29.
    Cimatti, G., Rovatti, R., Setti, G.: Chaos-based spreading in DS-UWB sensor networks increases available bit rate. IEEE Trans. Circuits Syst. I, Regul. Pap. 54(6), 1327–1339 (2007) MathSciNetCrossRefGoogle Scholar
  22. 30.
    Delchumps, D.F.: Stabilizing a linear system with quantized state feedback. IEEE Trans. Autom. Control 35(8), 916–924 (1990) CrossRefGoogle Scholar
  23. 31.
    Delvenne, J.C.: An optimal quantized feedback strategy for scalar linear systems. IEEE Trans. Autom. Control 51(2), 298–303 (2006) MathSciNetCrossRefGoogle Scholar
  24. 32.
    Deng, H., Krstic, M.: Output-feedback stabilization of stochastic nonlinear systems driven by noise of unknown covariance. Syst. Control Lett. 39, 173–182 (2000) MathSciNetMATHCrossRefGoogle Scholar
  25. 33.
    Deng, H., Krstic, M., Williams, R.: Stabilization of stochastic nonlinear systems driven by noise of unknown covariance. IEEE Trans. Autom. Control 46, 1237–1253 (2001) MathSciNetMATHCrossRefGoogle Scholar
  26. 35.
    Du, C., Xie, L., Soh, Y.C.: H reduced-order approximation of 2-D digital filters. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 48(6), 688–698 (2001) MATHCrossRefGoogle Scholar
  27. 36.
    Duan, Z., Chen, G., Huang, L.: Disconnected synchronized regions of complex dynamical networks. IEEE Trans. Autom. Control 54(4), 845–849 (2009) MathSciNetCrossRefGoogle Scholar
  28. 37.
    Elia, N., Mitter, K.: Stabilization of linear systems with limited information. IEEE Trans. Autom. Control 46(9), 1384–1400 (2001) MathSciNetMATHCrossRefGoogle Scholar
  29. 40.
    Fei, Z., Gao, H., Zheng, W.: New synchronization stability of complex networks with an interval time-varying coupling delay. IEEE Trans. Circuits Syst. II, Express Briefs 56(6), 499–503 (2009) CrossRefGoogle Scholar
  30. 41.
    Fridman, E., Dambrine, M.: Control under quantization, saturation and delay: an LMI approach. Automatica 45(10), 2258–2264 (2009) MathSciNetMATHCrossRefGoogle Scholar
  31. 42.
    Fridman, E., Seuret, A., Richard, J.P.: Robust sampled-data stabilization of linear systems: an input delay approach. Automatica 40(8), 1441–1446 (2004) MathSciNetMATHCrossRefGoogle Scholar
  32. 43.
    Fridman, E., Shaked, U., Suplin, V.: Input/output delay approach to robust sampled-data H control. Syst. Control Lett. 54(3), 271–282 (2005) MathSciNetMATHCrossRefGoogle Scholar
  33. 44.
    Fu, M., Xie, L.: The sector bound approach to quantized feedback control. IEEE Trans. Autom. Control 50(11), 1689–1711 (2005) MathSciNetGoogle Scholar
  34. 45.
    Gelb, A.: Applied Optimal Estimation. Cambridge University Press, Cambridge (1974) Google Scholar
  35. 46.
    Gao, H., Chen, T.: H estimation for uncertain systems with limited communication capacity. IEEE Trans. Autom. Control 52(11), 2070–2084 (2007) MathSciNetCrossRefGoogle Scholar
  36. 47.
    Gao, H., Chen, T., Chai, T.: Passivity and pacification for networked control systems. SIAM J. Control Optim. 46(4), 1299–1322 (2007) MathSciNetMATHCrossRefGoogle Scholar
  37. 48.
    Gao, H., Lam, J., Chen, G.: New criteria for synchronization stability of general complex dynamical networks with coupling delays. Phys. Lett. A 360(2), 263–273 (2006) MATHCrossRefGoogle Scholar
  38. 49.
    Gao, H., Meng, X., Chen, T.: H filter design for discrete delay systems: a new parameter-dependent approach. Int. J. Control 82(6), 993–1005 (2009) MathSciNetMATHCrossRefGoogle Scholar
  39. 50.
    Gao, H., Wu, J., Shi, P.: Robust sampled-data H control with stochastic sampling. Automatica 45(7), 1729–1736 (2009) MathSciNetMATHCrossRefGoogle Scholar
  40. 51.
    Gao, H., Zhao, Y., Lam, J., Chen, K.: H fuzzy filtering of nonlinear systems with intermittent measurements. IEEE Trans. Fuzzy Syst. 17(2), 291–300 (2009) CrossRefGoogle Scholar
  41. 58.
    He, W., Cao, J.: Exponential synchronization of hybrid coupled networks with delayed coupling. IEEE Trans. Neural Netw. 21(4), 571–583 (2010) CrossRefGoogle Scholar
  42. 59.
    He, X., Wang, Z., Zhou, D.: Robust H filtering for networked systems with multiple state delays. Int. J. Control 80(8), 1217–1232 (2007) MathSciNetMATHCrossRefGoogle Scholar
  43. 60.
    He, Y., Wang, Q., Wu, M., Lin, C.: Delay-dependent state estimation for delayed neural networks. IEEE Trans. Neural Netw. 17(4), 1077–1081 (2006) MATHCrossRefGoogle Scholar
  44. 62.
    Hou, Z., Cheng, L., Tan, M.: Decentralized robust adaptive control for the multiagent system consensus problem using neural networks. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 39(3), 636–647 (2009) CrossRefGoogle Scholar
  45. 63.
    Hu, T., Lin, Z., Chen, B.: Analysis and design for discrete-time linear systems subject to actuator saturation. Syst. Control Lett. 45(2), 97–112 (2002) MathSciNetMATHCrossRefGoogle Scholar
  46. 64.
    Hu, X., Wang, J.: Design of general projection neural networks for solving monotone linear variational inequalities and linear and quadratic optimization problems. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 37(5), 1414–1421 (2007) CrossRefGoogle Scholar
  47. 68.
    Jost, J., Joy, M.: Spectral properties and synchronization in coupled map lattices. Phys. Rev. E 65(4), 1025–1032 (2002). Art. no. 061201 MathSciNetGoogle Scholar
  48. 70.
    Karimi, H.R., Gao, H.: New delay-dependent exponential H synchronization for uncertain neural networks with mixed time delays. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 40(1), 173–185 (2010) CrossRefGoogle Scholar
  49. 74.
    Li, H., Yue, D.: Synchronization of Markovian jumping stochastic complex networks with distributed time delays and probabilistic interval discrete time-varying delays. J. Phys. A, Math. Theoret. 43(10) (2010). Art. no. 105101, doi: 10.1088/1751-8113/43/10/105101
  50. 75.
    Li, P., Lam, J., Shu, Z.: On the transient and steady-state estimates of interval genetic regulatory networks. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 40(2), 336–349 (2010) CrossRefGoogle Scholar
  51. 76.
    Li, T., Zhang, J.: Mean square average-consensus under measurement noises and fixed topologies: necessary and sufficient conditions. Automatica 45(8), 1929–1936 (2009) MathSciNetMATHCrossRefGoogle Scholar
  52. 77.
    Li, Z., Chen, G.: Global synchronization and asymptotic stability of complex dynamical networks. IEEE Trans. Circuits Syst. II, Express Briefs 53(1), 28–33 (2006) CrossRefGoogle Scholar
  53. 78.
    Li, Z., Duan, Z., Chen, G., Huang, L.: Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint. IEEE Trans. Circuits Syst. I, Regul. Pap. 57(1), 213–224 (2010) MathSciNetCrossRefGoogle Scholar
  54. 79.
    Liang, J., Wang, Z., Liu, Y., Liu, X.: Robust synchronization of an array of coupled stochastic discrete-time delayed neural networks. IEEE Trans. Neural Netw. 19(11), 1910–1921 (2008) CrossRefGoogle Scholar
  55. 80.
    Liberzon, D.: Hybrid feedback stabilization of systems with quantized signals. Automatica 39(9), 1543–1554 (2003) MathSciNetMATHCrossRefGoogle Scholar
  56. 81.
    Lin, P., Jia, Y., Li, L.: Distributed robust H consensus control in directed networks of agents with time-delay. Syst. Control Lett. 57(8), 643–653 (2008) MathSciNetMATHCrossRefGoogle Scholar
  57. 82.
    Liu, Y., Pan, Z., Shi, S.: Output feedback control design for strict-feedback stochastic nonlinear systems under a risk-sensitive cost. IEEE Trans. Autom. Control 48(3), 509–513 (2003) MathSciNetCrossRefGoogle Scholar
  58. 83.
    Liu, Y., Wang, Z., Liang, J., Liu, X.: Synchronization and state estimation for discrete-time complex networks with distributed delays. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 38(5), 1314–1325 (2008) MathSciNetCrossRefGoogle Scholar
  59. 84.
    Liu, Y., Wang, Z., Liu, X.: Design of exponential state estimators for neural networks with mixed time decays. Phys. Lett. A 364, 401–412 (2007) CrossRefGoogle Scholar
  60. 85.
    Lu, B., Gungor, V.C.: Online and remote motor energy monitoring and fault diagnostics using wireless sensor networks. IEEE Trans. Ind. Electron. 56(11), 4651–4659 (2009) CrossRefGoogle Scholar
  61. 86.
    Lü, J., Chen, G.: A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans. Autom. Control 50(6), 841–846 (2005) CrossRefGoogle Scholar
  62. 87.
    Lu, W., Chen, T.: Synchronization of coupled connected neural networks with delays. IEEE Trans. Circuits Syst. I, Regul. Pap. 51(12), 2491–2503 (2004) MathSciNetCrossRefGoogle Scholar
  63. 88.
    Lu, W., Chen, T.: Global synchronization of discrete-time dynamical network with a directed graph. IEEE Trans. Circuits Syst. II, Express Briefs 54(2), 136–140 (2007) CrossRefGoogle Scholar
  64. 89.
    Lu, X., Xie, L., Zhang, H., Wang, W.: Robust Kalman filtering for discrete-time systems with measurement delay. IEEE Trans. Circuits Syst. II, Express Briefs 54(6), 522–526 (2007) CrossRefGoogle Scholar
  65. 91.
    Mahmoud, M., Shi, Y., Nounou, H.: Resilient observer-based control of uncertain time-delay systems. Int. J. Innov. Comput. Inf. Control 3(2), 407–418 (2007) Google Scholar
  66. 96.
    McEneaney, W.M., Yin, G., Zhang, Q. (eds.): Stochastic Analysis, Control, Optimization and Applications. Systems and Control: Foundations and Applications Series. Birkhäuser, Boston (1999) MATHGoogle Scholar
  67. 97.
    Mou, S., Gao, H., Lam, J., Qiang, W.: A new criterion of delay-dependent asymptotic stability for Hopfield neural networks with time delay. IEEE Trans. Neural Netw. 19(3), 532–535 (2008) CrossRefGoogle Scholar
  68. 98.
    Nguang, S.K., Shi, P.: Nonlinear H filtering of sampled-data systems. Automatica 36(2), 303–310 (2000) MathSciNetMATHCrossRefGoogle Scholar
  69. 99.
    Nguang, S.K., Shi, P.: H filtering design for uncertain nonlinear systems under sampled measurements. Int. J. Syst. Sci. 32(7), 889–898 (2001) MathSciNetMATHGoogle Scholar
  70. 100.
    Olfati-Saber, R.: Distributed Kalman filtering for sensor networks. In: Proc. 46th IEEE Conference Decision and Control, New Orleans, LA (2007) Google Scholar
  71. 101.
    Olfati-Saber, R., Murray, R.M.: Consensus problems in the networks of agents with switching topology and time delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004) MathSciNetCrossRefGoogle Scholar
  72. 102.
    Olfati-Saber, R., Shamma, J.: Consensus filters for sensor networks and distributed sensor fusion. In: 44th IEEE Conference on Decision and Control, 2005; and 2005 European Control Conference, CDC-ECC’05, pp. 6698–6703. IEEE, New York (2005) Google Scholar
  73. 103.
    Palm, R.: Synchronization of decentralized multiple-model systems by market-based optimization. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 34(1), 665–672 (2004) MathSciNetCrossRefGoogle Scholar
  74. 105.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990) MathSciNetCrossRefGoogle Scholar
  75. 106.
    Peng, C., Tian, Y.: Networked H control of linear systems with state quantization. Inf. Sci. 177(24), 5763–5774 (2007) MathSciNetMATHCrossRefGoogle Scholar
  76. 107.
    Perez-Munuzuri, V., Perez-Villar, V., Chua, L.O.: Autowaves for image processing on a two-dimensional CNN array of excitable nonlinear circuits: flat and wrinkled labyrinths. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 40(3), 174–181 (1993) MATHCrossRefGoogle Scholar
  77. 109.
    Qiu, L., Chen, T.: H 2-optimal design of multirate sampled-data systems. IEEE Trans. Autom. Control 39(12), 2506–2511 (1994) MathSciNetMATHCrossRefGoogle Scholar
  78. 110.
    Qiu, L., Chen, T.: Multirate sampled-data systems: all H suboptimal controllers and the minimum entropy controller. IEEE Trans. Autom. Control 44(3), 537–550 (1999) MathSciNetMATHCrossRefGoogle Scholar
  79. 112.
    Sahebsara, M., Chen, T., Shah, S.L.: Optimal H 2 filtering in networked control systems with multiple packet dropout. IEEE Trans. Autom. Control 52(8), 1508–1513 (2007) MathSciNetCrossRefGoogle Scholar
  80. 114.
    Sahebsara, M., Chen, T., Shah, S.L.: Optimal H filtering in networked control systems with multiple packet dropouts. Syst. Control Lett. 57(9), 696–702 (2008) MathSciNetMATHCrossRefGoogle Scholar
  81. 115.
    der Schaft, A.J.V.: l 2-gain analysis of nonlinear systems and nonlinear state feedback H control. IEEE Trans. Autom. Control 37(6), 770–784 (1992) MATHCrossRefGoogle Scholar
  82. 116.
    Schizas, I., Roumeliotis, S.I., Giannakis, G.B., Ribeiro, A.: Anytime optimal distributed Kalman filtering and smoothing. In: Proc. IEEE Workshop on Statistical Signal Process, Madison, WI (2007) Google Scholar
  83. 117.
    Shaked, U., Berman, N.: H nonlinear filtering of discrete-time processes. IEEE Trans. Signal Process. 43(9), 2205–2209 (1995) CrossRefGoogle Scholar
  84. 119.
    Shi, G., Hong, Y.: Global target aggregation and state agreement of nonlinear multi-agent systems with switching topologies. Automatica 45(5), 1165–1175 (2009) MathSciNetMATHCrossRefGoogle Scholar
  85. 120.
    Shi, P.: Filtering on sampled-data systems with parametric uncertainty. IEEE Trans. Autom. Control 43(7), 1022–1027 (1998) MATHCrossRefGoogle Scholar
  86. 121.
    Shi, P., Mahmoud, M., Nguang, S.K., Ismail, A.: Robust filtering for jumping systems with mode-dependent delays. Signal Process. 43(7), 1022–1027 (2006) Google Scholar
  87. 122.
    Shu, Z., Lam, J.: Global exponential estimates of stochastic interval neural networks with discrete and distributed delays. Neurocomputing 71(13–15), 2950–2963 (2008) CrossRefGoogle Scholar
  88. 123.
    Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M.I., Sastry, S.S.: Kalman filtering with intermittent observations. IEEE Trans. Autom. Control 49(9), 1453–1464 (2004) MathSciNetCrossRefGoogle Scholar
  89. 125.
    Souza, F., Palhares, R.: Synchronisation of chaotic delayed artificial neural networks: an H control approach. Int. J. Syst. Sci. 40(9), 937–944 (2009) MathSciNetCrossRefGoogle Scholar
  90. 126.
    Speranzon, A., Fischione, C., Johansson, K.H., Sangiovanni-Vincentelli, A.: A distributed minimum variance estimator for sensor networks. IEEE J. Sel. Areas Commun. 26(4), 609–621 (2008) CrossRefGoogle Scholar
  91. 127.
    Stanković, S.S., Stanković, M.S., Stipanović, D.M.: Consensus based overlapping decentralized estimation with missing observations and communication faults. Automatica 45(6), 1397–1406 (2009) MathSciNetMATHCrossRefGoogle Scholar
  92. 128.
    Sun, S., Xie, L., Xiao, W.: Optimal full-order and reduced-order estimators for discrete-time systems with multiple packet dropouts. IEEE Trans. Signal Process. 56(8), 4031–4038 (2008) MathSciNetCrossRefGoogle Scholar
  93. 129.
    Sun, Y., Wang, L., Xie, G.: Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays. Syst. Control Lett. 57(2), 175–183 (2008) MathSciNetMATHCrossRefGoogle Scholar
  94. 130.
    Tian, E., Yue, D., Peng, C.: Quantized output feedback control for networked control systems. Inf. Sci. 178(12), 2734–2749 (2008) MathSciNetMATHCrossRefGoogle Scholar
  95. 131.
    Toroczkai, Z.: Complex networks: the challenge of interaction topology. Los Alamos Sci. 29, 94–109 (2005) Google Scholar
  96. 132.
    Wang, X., Chen, G.: Synchronization in small-world dynamical networks. Int. J. Bifurc. Chaos 12(1), 187–192 (2002) CrossRefGoogle Scholar
  97. 134.
    Wang, Z., Ho, D.W.C., Liu, X.: Variance-constrained filtering for uncertain stochastic systems with missing measurements. IEEE Trans. Autom. Control 48(7), 1254–1258 (2003) MathSciNetCrossRefGoogle Scholar
  98. 135.
    Wang, Z., Ho, D.W.C., Liu, X.: Robust filtering under randomly varying sensor delay with variance constraints. IEEE Trans. Circuits Syst. II, Express Briefs 51(6), 320–326 (2004) CrossRefGoogle Scholar
  99. 136.
    Wang, Z., Ho, D.W.C., Liu, X.: State estimation for delayed neural networks. IEEE Trans. Neural Netw. 16(1), 279–284 (2005) CrossRefGoogle Scholar
  100. 137.
    Wang, Z., Ho, D.W.C., Liu, Y., Liu, X.: Robust H control for a class of nonlinear discrete time-delay stochastic systems with missing measurements. Automatica 45(3), 684–691 (2009) MathSciNetMATHCrossRefGoogle Scholar
  101. 138.
    Wang, Z., Huang, B., Huo, P.: Sampled-data filtering with error covariance assignment. IEEE Trans. Signal Process. 49(3), 666–670 (2001) CrossRefGoogle Scholar
  102. 139.
    Wang, Z., Liu, Y., Liu, X.: H filtering for uncertain stochastic time-delay systems with sector-bounded nonlinearities. Automatica 44(5), 1268–1277 (2008) MathSciNetCrossRefGoogle Scholar
  103. 140.
    Wang, Z., Yang, F., Ho, D.W.C., Liu, X.: Robust H filtering for stochastic time-delay systems with missing measurements. IEEE Trans. Signal Process. 54(7), 2579–2587 (2006) CrossRefGoogle Scholar
  104. 142.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998) CrossRefGoogle Scholar
  105. 143.
    Wei, G., Shu, H.: H filtering on nonlinear stochastic systems with delay. Chaos Solitons Fractals 33(2), 663–670 (2007) MathSciNetMATHCrossRefGoogle Scholar
  106. 144.
    Wei, G., Wang, Z., Shu, H.: Robust filtering with stochastic nonlinearities and multiple missing measurements. Automatica 45(3), 836–841 (2009) MathSciNetMATHCrossRefGoogle Scholar
  107. 145.
    Wood, K., den Broeck, C.V., Kawai, R., Lindenberg, K.: Continuous and discontinuous phase transitions and partial synchronization in stochastic three-state oscillators. Phys. Rev. E 76(4) (2007). Art. no. 041132, doi: 10.1103/PhysRevE.76.041132
  108. 146.
    Wu, J., Chen, X., Gao, H.: H filtering with stochastic sampling. Signal Process. 90(4), 1131–1145 (2010) MATHCrossRefGoogle Scholar
  109. 147.
    Wu, L., Shi, P., Gao, H., Wang, C.: H filtering for 2D Markovian jump systems. Automatica 44(7), 1849–1858 (2008) MathSciNetMATHCrossRefGoogle Scholar
  110. 148.
    Xiao, F., Wang, L.: Consensus protocols for discrete-time multi-agent systems with time-varying delays. Automatica 44(10), 2577–2582 (2008) MathSciNetMATHCrossRefGoogle Scholar
  111. 149.
    Xiao, L., Boyed, S.: Fast linear iterations for distributed averaging. Syst. Control Lett. 53(1), 65–78 (2004) MATHCrossRefGoogle Scholar
  112. 150.
    Xiao, Y., Cao, Y., Lin, Z.: Robust filtering for discrete-time systems with saturation and its application to transmultiplexers. IEEE Trans. Signal Process. 52(2), 1266–1277 (2004) MathSciNetCrossRefGoogle Scholar
  113. 153.
    Xie, S., Xie, L.: Decentralized stabilization of a class of interconnected stochastic nonlinear systems. IEEE Trans. Autom. Control 45(1), 132–137 (2000) MATHCrossRefGoogle Scholar
  114. 154.
    Xu, S., Lam, J.: A survey of linear matrix inequality techniques in stability analysis of delay systems. Int. J. Syst. Sci. 39(12), 1095–1113 (2008) MathSciNetMATHCrossRefGoogle Scholar
  115. 155.
    Xu, S., Lam, J., Mao, X.: Delay-dependent H control and filtering for uncertain Markovian jump systems with time-varying delays. IEEE Trans. Circuits Syst. I, Regul. Pap. 54(9), 2070–2077 (2007) MathSciNetCrossRefGoogle Scholar
  116. 156.
    Yang, F., Li, Y.: Set-membership filtering for systems with sensor saturation. Automatica 45(8), 1896–1902 (2009) MathSciNetMATHCrossRefGoogle Scholar
  117. 157.
    Yang, F., Wang, Z., Feng, G., Liu, X.: Robust filtering with randomly varying sensor delay: the finite-horizon case. IEEE Trans. Circuits Syst. I, Regul. Pap. 56(3), 1310–1314 (2009) MathSciNetGoogle Scholar
  118. 159.
    Yang, F., Wang, Z., Hung, Y.S.: Robust Kalman filtering for discrete time-varying uncertain systems with multiplicative noises. IEEE Trans. Autom. Control 47(7), 1179–1183 (2002) MathSciNetCrossRefGoogle Scholar
  119. 161.
    Yaz, E., Ray, A.: Linear unbiased state estimation for random models with sensor delay. In: Proc. Conf. on Decision & Control, Kobe, Japan, pp. 47–52 (1996) Google Scholar
  120. 162.
    Yu, W., Chen, G., Wang, Z., Yang, W.: Distributed consensus filtering in sensor networks. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 39(6), 1568–1577 (2009) CrossRefGoogle Scholar
  121. 163.
    Yue, D., Peng, C., Tang, G.Y.: Guaranteed cost control of linear systems over networks with state and input quantisations. IEE Proc., Control Theory Appl. 153(6), 658–664 (2006) MathSciNetCrossRefGoogle Scholar
  122. 165.
    Zhang, W., Chen, B.S., Tseng, C.S.: Robust H filtering for nonlinear stochastic systems. IEEE Trans. Signal Process. 53(2), 589–598 (2005) MathSciNetCrossRefGoogle Scholar
  123. 168.
    Zhong, W., Stefanovski, J.D., Dimirovski, G.M., Zhao, J.: Decentralized control and synchronization of time-varying complex dynamical network. Kybernetika 45(1), 151–167 (2009) MathSciNetMATHGoogle Scholar
  124. 169.
    Zhou, S., Feng, G.: H filtering for discrete-time systems with randomly varying sensor delays. Automatica 44(7), 1918–1922 (2008) MathSciNetMATHCrossRefGoogle Scholar
  125. 170.
    Zuo, Z., Ho, D.W.C., Wang, Y.: Fault tolerant control for singular systems with actuator saturation and nonlinear perturbation. Automatica 46(3), 569–576 (2010) MathSciNetMATHCrossRefGoogle Scholar
  126. 171.
    Zuo, Z., Wang, J., Huang, L.: Output feedback H controller design for linear discrete-time systems with sensor nonlinearities. IEE Proc., Control Theory Appl. 152(1), 9–26 (2005) CrossRefGoogle Scholar
  127. 172.
    Zuo, Z., Yang, C., Wang, Y.: A unified framework of exponential synchronization for complex networks with time-varying delays. Phys. Lett. A 374(19–20), 1989–1999 (2010) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Bo Shen
    • 1
  • Zidong Wang
    • 2
  • Huisheng Shu
    • 1
  1. 1.School of Inform. Science & Technol.Donghua UniversityShanghaiChina, People’s Republic
  2. 2.Dept. of Information Systems & ComputingBrunel UniversityUxbridgeUK

Personalised recommendations