Advertisement

Anode Catalysts for Alkaline Direct Alcohol Fuel Cells and Characteristics of the Catalyst Layer

Chapter
Part of the Lecture Notes in Energy book series (LNEN, volume 9)

Abstract

The faster kinetics of the alcohol oxidation reaction in alkaline direct alcohol fuel cells (ADAFCs), opening up the possibility of using less expensive metal catalysts, as silver, nickel, and palladium, makes the alkaline direct alcohol fuel cell a potentially low-cost technology compared to acid direct alcohol fuel cell technology, which employs platinum catalysts. In this work an overview of catalysts for ADAFCs, and of testing of ADAFCs, fuelled with methanol, ethanol, and ethylene glycol, formed by these materials, is presented.

Keywords

Alkaline Medium Methanol Oxidation Catalyst Layer Membrane Electrode Assembly Ethanol Oxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Markovic N, Gasteiger H, Ross PN (1997) Kinetics of oxygen reduction on Pt(hkl) electrodes: implications for the crystallite size effect with supported Pt electrocatalysts. J Electrochem Soc 144(5):1591–1597Google Scholar
  2. 2.
    Blizanac BB, Ross PN, Markovic NM (2007) Oxygen electroreduction on Ag(111): the pH effect. Electrochim Acta 52(6):2264–2271Google Scholar
  3. 3.
    Kordesch K, Hacker V, Gsellmann J, Cifrain M, Faleschini G, Enzinger P, Fankhauser R, Ortner M, Muhr M, Aronson RR (2000) Alkaline fuel cells applications. J Power Sources 86(1–2):162–165Google Scholar
  4. 4.
    Gouerec P, Poletto L, Denizot J, Sanchez-Cortezon E, Miners JH (2004) The evolution of the performance of alkaline fuel cells with circulating electrolyte. J Power Sources 129(2): 193–204Google Scholar
  5. 5.
    Gulzow E, Schulze M, Gerke U (2006) Bipolar concept for alkaline fuel cells. J Power Sources 156(1):1–7Google Scholar
  6. 6.
    Lin BYS, Kirk DW, Thorpe SJ (2006) Performance of alkaline fuel cells: a possible future energy system? J Power Sources 161(1):474–483Google Scholar
  7. 7.
    Duerr M, Gair S, Cruden A, McDonald J (2007) Dynamic electrochemical model of an alkaline fuel cell stack. J Power Sources 171(2):1023–1032Google Scholar
  8. 8.
    Matsuoka K, Iriyama Y, Abe T, Matsuoka M, Ogumi Z (2005) Alkaline direct alcohol fuel cells using an anion exchange membrane. J Power Sources 150:27–31Google Scholar
  9. 9.
    Varcoe JR, Slade RCT, Lam How Yee E (2006) An alkaline polymer electrochemical interface: a breakthrough in application of alkaline anion-exchange membranes in fuel cells. Chem Commun 13:1428–1429Google Scholar
  10. 10.
    Yang CC, Hsu ST, Chien WC, Shih MC, Chiu SJ, Lee KT, Wang CL (2006) Electrochemical properties of air electrodes based on MnO2 catalysts supported on binary carbons. Int J Hydrogen Energy 31(14):2076–2087Google Scholar
  11. 11.
    Bidault F, Brett DJL, Middleton PH, Brandon NP (2009) Review of gas diffusion cathodes for alkaline fuel cells. J Power Sources 187(1):39–48Google Scholar
  12. 12.
    Dillon R, Srinivasan S, Arico AS, Antonucci V (2004) International activities in DMFC R&D: status of technologies and potential applications. J Power Sources 127(1–2):112–126Google Scholar
  13. 13.
    Wasmus S, Kuver A (1999) Methanol oxidation and direct methanol fuel cells: a selective review. J Electroanal Chem 461(1–2):14–31Google Scholar
  14. 14.
    Antolini E (2007) Catalysts for direct ethanol fuel cells. J Power Sources 170(1):1–12Google Scholar
  15. 15.
    Peled E, Livshits V, Duvdevani T (2002) High-power direct ethylene glycol fuel cell (DEGFC) based on nanoporous proton-conducting membrane (NP-PCM). J Power Sources 106(1–2):245–248Google Scholar
  16. 16.
    Tripkovic AV, Popovic KD, Grgur BN, Blizanac B, Ross PN, Markovic NM (2002) Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions. Electrochim Acta 47(22–23):3707–3714Google Scholar
  17. 17.
    Yu EH, Scott K (2004) Development of direct methanol alkaline fuel cells using anion exchange membranes. J Power Sources 137(2):248–256Google Scholar
  18. 18.
    Scott K, Yu E, Vlachogiannopoulos G, Shivare M, Duteanu N (2008) Performance of a direct methanol alkaline membrane fuel cell. J Power Sources 175(1):452–457Google Scholar
  19. 19.
    Coutanceau C, Demarconnay L, Lamy C, Leger JM (2006) Development of electrocatalysts for solid alkaline fuel cell (SAFC). J Power Sources 156(1):14–19Google Scholar
  20. 20.
    Spendelow JS, Wieckowski A (2007) Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys Chem Chem Phys 9(21):2654–2675Google Scholar
  21. 21.
    Beden B, Kadirgan F, Lamy C, Leger JM (1982) Oxidation of methanol on a platinum-electrode in alkaline-medium – effect of metal Ad-atoms on the electrocatalytic activity. J Electroanal Chem 142(1–2):171–190Google Scholar
  22. 22.
    Tripkovic AV, Popovic KD, Momcilovic JD, Drazic DM (1998) Kinetic and mechanistic study of methanol oxidation on a Pt(100) surface in alkaline media. J Electroanal Chem 448(2):173–181Google Scholar
  23. 23.
    Tripkovic AV, Popovic KD, Lovic JD (2001) The influence of the oxygen-containing species on the electrooxidation of the C-1-C-4 alcohols at some platinum single crystal surfaces in alkaline solution. Electrochim Acta 46(20–21):3163–3173Google Scholar
  24. 24.
    Spendelow JS, Babu PK, Wieckowski A (2005) Electrocatalytic oxidation of carbon monoxide and methanol on platinum surfaces decorated with ruthenium. Curr Opin Solid State Mater Sci 9(1–2):37–48Google Scholar
  25. 25.
    Petrii OA (2008) Pt-Ru electrocatalysts for fuel cells: a representative review. J Solid State Electron 12(5):609–642Google Scholar
  26. 26.
    Petry OA, Podlovchenko BI, Frumkin AN, Lal H (1965) Behaviour of platinized-platinum and platinum-ruthenium electrodes in methanol solutions. J Electroanal Chem 10(4):253–269Google Scholar
  27. 27.
    Rauhe BR, Mclarnon FR, Cairns EJ (1995) Direct anodic-oxidation of methanol on supported platinum ruthenium catalyst in aqueous cesium carbonate. J Electrochem Soc 142(4):1073–1084Google Scholar
  28. 28.
    Tripkovic AV, Strbac S, Popovic KD (2003) Effect of temperature on the methanol oxidation at supported Pt and PtRu catalysts in alkaline solution. Electrochem Commun 5(6):484–490Google Scholar
  29. 29.
    Jayashree RS, Egas D, Spendelow JS, Natarajan D, Markoski LJ, Kenis PJA (2006) Air-breathing laminar flow-based direct methanol fuel cell with alkaline electrolyte. Electrochem Solid State Lett 9(5):A252–A256Google Scholar
  30. 30.
    Kadirgan F, Beden B, Leger JM, Lamy C (1981) Synergistic effect in the electrocatalytic oxidation of methanol on platinum + palladium alloy electrodes. J Electroanal Chem 125(1): 89–103Google Scholar
  31. 31.
    Watanabe M, Motoo S (1975) Electrocatalysis by Ad-atoms. 1. Enhancement of oxidation of methanol on platinum and palladium by gold Ad-atoms. J Electroanal Chem 60(3):259–266Google Scholar
  32. 32.
    Haruta M, Date M (2001) Advances in the catalysis of Au nanoparticles. Appl Catal A Gen 222(1–2):427–437Google Scholar
  33. 33.
    Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281(5383):1647–1650Google Scholar
  34. 34.
    Luo J, Njoki PN, Lin Y, Mott D, Wang LY, Zhong CJ (2006) Characterization of carbon-supported AuPt nanoparticles for electrocatalytic methanol oxidation reaction. Langmuir 22(6):2892–2898Google Scholar
  35. 35.
    Zeng JH, Yang J, Lee JY, Zhou WJ (2006) Preparation of carbon-supported core-shell Au-Pt nanoparticles for methanol oxidation reaction: the promotional effect of the Au core. J Phys Chem B 110(48):24606–24611Google Scholar
  36. 36.
    Guo X, Guo DJ, Qiu XP, Chen LQ, Zhu WT (2008) A simple one-step preparation of high utilization AuPt nanoparticles supported on MWCNTs for methanol oxidation in alkaline medium. Electrochem Commun 10(11):1748–1751Google Scholar
  37. 37.
    Zhang YZ, Gu YE, Lin SX, Wei JP, Wang ZH, Wang CM, Du YL, Ye WC (2011) One-step synthesis of PtPdAu ternary alloy nanoparticles on graphene with superior methanol electrooxidation activity. Electrochim Acta 56(24):8746–8751Google Scholar
  38. 38.
    Xu CW, Zeng R, Shen PK, Wei ZD (2005) Synergistic effect of CeO2 modified Pt/C catalysts on the alcohols oxidation. Electrochim Acta 51(6):1031–1035Google Scholar
  39. 39.
    Shen PK, Xu CW, Zeng R, Liu YL (2006) Electro-oxidation of methanol on NiO-promoted Pt/C and Pt/C catalysts. Electrochem Solid State 9(2):A39–A42Google Scholar
  40. 40.
    Wang JS, Xi JY, Bai YX, Shen Y, Sun J, Chen LQ, Zhu WT, Qiu XP (2007) Structural designing of Pt-CeO2/CNTs for methanol electro-oxidation. J Power Sources 164(2):555–560Google Scholar
  41. 41.
    Justin P, Rao GR (2009) Enhanced activity of methanol electro-oxidation on Pt-V2O5/C catalysts. Catal Today 141(1–2):138–143Google Scholar
  42. 42.
    Feng YY, Bi LX, Liu ZH, Kong DS, Yu ZY (2012) Significantly enhanced electrocatalytic activity for methanol electro-oxidation on Ag oxide-promoted PtAg/C catalysts in alkaline electrolyte. J Catal 290:18–25Google Scholar
  43. 43.
    Biswas PC, Enyo M (1992) Electrooxidation of methanol on graphite-supported perovskite-modified Pt electrodes in alkaline-solution. J Electroanal Chem 322(1–2):203–220Google Scholar
  44. 44.
    Fleischmann M, Korinek K, Pletcher D (1971) Oxidation of organic compounds at a nickel anode in alkaline solution. J Electroanal Chem 31(1):39–49Google Scholar
  45. 45.
    Kowal A, Port SN, Nichols RJ (1997) Nickel hydroxide electrocatalysts for alcohol oxidation reactions: an evaluation by infrared spectroscopy and electrochemical methods. Catal Today 38(4):483–492Google Scholar
  46. 46.
    Rahim MAA, Hameed RMA, Khalil MW (2004) Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium. J Power Sources 134(2):160–169Google Scholar
  47. 47.
    Yi QF, Huang W, Zhang JJ, Liu XP, Li L (2008) Methanol oxidation on titanium-supported nano-scale Ni flakes. Catal Commun 9(10):2053–2058Google Scholar
  48. 48.
    Kazakov VA, Titova VN, Yavich AA, Petrova NV, Tarasevich MR (2004) Electrocatalytic properties of electrolytic Ni/Ru and Fe/Ru in the methanol oxidation. Russ J Electrochem 40(6):679–682Google Scholar
  49. 49.
    Danaee I, Jafarian M, Forouzandeh F, Gobal F, Mahjani MG (2008) Electrocatalytic oxidation of methanol on Ni and NiCu alloy modified glassy carbon electrode. Int J Hydrogen Energy 33(16):4367–4376Google Scholar
  50. 50.
    Jafarian M, Moghaddam RB, Mahjani MG, Gobal F (2006) Electro-catalytic oxidation of methanol on a Ni-Cu alloy in alkaline medium. J Appl Electrochem 36(8):913–918Google Scholar
  51. 51.
    Casella IG, Cataldi TRI, Salvi AM, Desimoni E (1993) Electrocatalytic oxidation and liquid-chromatographic detection of aliphatic-alcohols at a nickel-based glassy-carbon modified electrode. Anal Chem 65(21):3143–3150Google Scholar
  52. 52.
    Ciszewski A (1995) Catalytic oxidation of methanol on a glassy carbon electrode electrochemically modified by a conductive Ni-II-curcumin film. Electroanalysis 7(12):1132–1135Google Scholar
  53. 53.
    Ciszewski A, Milczarek G (1997) Glassy carbon electrode modified by conductive, polymeric nickel(II) porphyrin complex as a 3D homogeneous catalytic system for methanol oxidation in basic media. J Electroanal Chem 426(1–2):125–130Google Scholar
  54. 54.
    Golikand AN, Asgari M, Maragheh MG, Shahrokhian S (2006) Methanol electrooxidation on a nickel electrode modified by nickel-dimethylglyoxime complex formed by electrochemical synthesis. J Electroanal Chem 588(1):155–160Google Scholar
  55. 55.
    Golabi SM, Nozad A (2004) Electrocatalytic oxidation of methanol on a nickel-porphyrin IX complex modified glassy carbon electrode in alkaline medium. Electroanalysis 16(3):199–209Google Scholar
  56. 56.
    Cardoso WS, Dias VLN, Costa WM, Rodrigues ID, Marques EP, Sousa AG, Boaventura J, Bezerra CWB, Song CJ, Liu HS, Zhang JJ, Marques ALB (2009) Nickel-dimethylglyoxime complex modified graphite and carbon paste electrodes: preparation and catalytic activity towards methanol/ethanol oxidation. J Appl Electrochem 39(1):55–64Google Scholar
  57. 57.
    Golikand AN, Raoof J, Baghayeri M, Asgari M, Irannejad L (2009) Nickel electrode modified by N,N-bis(salicylidene)phenylenediamine (Salophen) as a catalyst for methanol oxidation in alkaline medium. Russ J Electrochem 45(2):192–198Google Scholar
  58. 58.
    Taraszewska J, Roslonek G (1994) Electrocatalytic oxidation of methanol on a glassy-carbon electrode modified by nickel-hydroxide formed by ex-situ chemical precipitation. J Electroanal Chem 364(1–2):209–213Google Scholar
  59. 59.
    AvramovIvic M, Jovanovic V, Vlajnic G, Popic J (1997) The electrocatalytic properties of the oxides of noble metals in the electro-oxidation of some organic molecules. J Electroanal Chem 423(1–2):119–124Google Scholar
  60. 60.
    Borkowska Z, Tymosiak-Zielinska A, Shul G (2004) Electrooxidation of methanol on polycrystalline and single crystal gold electrodes. Electrochim Acta 49(8):1209–1220Google Scholar
  61. 61.
    Hernandez J, Solla-Gullon J, Herrero E, Aldaz A, Feliu JM (2006) Methanol oxidation on gold nanoparticles in alkaline media: unusual electrocatalytic activity. Electrochim Acta 52(4): 1662–1669Google Scholar
  62. 62.
    Bunazawa H, Yamazaki Y (2009) Ultrasonic synthesis and evaluation of non-platinum catalysts for alkaline direct methanol fuel cells. J Power Sources 190(2):210–215Google Scholar
  63. 63.
    Kumar KS, Haridoss P, Seshadri SK (2008) Synthesis and characterization of electrodeposited Ni-Pd alloy electrodes for methanol oxidation. Surf Coating Technol 202(9):1764–1770Google Scholar
  64. 64.
    Liu ZL, Zhang XH, Hong L (2009) Physical and electrochemical characterizations of nanostructured Pd/C and PdNi/C catalysts for methanol oxidation. Electrochem Commun 11(4):925–928MathSciNetGoogle Scholar
  65. 65.
    Wang ML, Liu WW, Huang CD (2009) Investigation of PdNiO/C catalyst for methanol electrooxidation. Int J Hydrogen Energy 34(6):2758–2764Google Scholar
  66. 66.
    Guo B, Zhao SZ, Han GY, Zhang LW (2008) Continuous thin gold films electroless deposited on fibrous mats of polyacrylonitrile and their electrocatalytic activity towards the oxidation of methanol. Electrochim Acta 53(16):5174–5179Google Scholar
  67. 67.
    Ballarin B, Cassani MC, Scavetta E, Tonelli D (2008) Self-assembled gold nanoparticles modified ITO electrodes: the monolayer binder molecule effect. Electrochim Acta 53(27): 8034–8044Google Scholar
  68. 68.
    White JH, Sammells AF (1993) Perovskite anode electrocatalysis for direct methanol fuel-cells. J Electrochem Soc 140(8):2167–2177Google Scholar
  69. 69.
    Raghuveer V, Thampi KR, Xanthopoulos N, Mathieu HJ, Viswanathan B (2001) Rare earth cuprates as electrocatalysts for methanol oxidation. Solid State Ionics 140(3–4):263–274Google Scholar
  70. 70.
    Yu HC, Fung KZ, Guo TC, Chang WL (2004) Syntheses of perovskite oxides nanoparticles La1−xSrxMO3−δ (M = Co and Cu) as anode electrocatalyst for direct methanol fuel cell. Electrochim Acta 50(2–3):811–816Google Scholar
  71. 71.
    Singh RN, Sharma T, Singh A, Anindita, Mishra D, Tiwari SK (2008) Perovskite-type La2−xSrxNiO4 (0 <= x <= 1) as active anode materials for methanol oxidation in alkaline solutions. Electrochim Acta 53(5):2322–2330Google Scholar
  72. 72.
    Singh RN, Singh A, Mishra D, Anindita, Chartier P (2008) Oxidation of methanol on perovskite-type La2−xSrxNiO4 (0 <= x <= 1) film electrodes modified by dispersed nickel in 1 M KOH. J Power Sources 185(2):776–783Google Scholar
  73. 73.
    Xu CW, Cheng LQ, Shen PK, Liu YL (2007) Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media. Electrochem Commun 9(5): 997–1001Google Scholar
  74. 74.
    Liang ZX, Zhao TS, Xu JB, Zhu LD (2009) Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochim Acta 54(8):2203–2208Google Scholar
  75. 75.
    Wang H, Xu CW, Cheng FL, Jiang SP (2007) Pd nanowire arrays as electrocatalysts for ethanol electrooxidation. Electrochem Commun 9(5):1212–1216Google Scholar
  76. 76.
    Elshafei AA, Elmaksoud SAA, Moussa MNH (1992) Effect of some Ad-atoms on the electrocatalytic oxidation of ethanol on a platinum-electrode in alkaline-medium. J Electroanal Chem 336(1–2):73–83Google Scholar
  77. 77.
    Soundararajan D, Park JH, Kim KH, Ko JM (2012) Pt-Ni alloy nanoparticles supported on CNF as catalyst for direct ethanol fuel cells. Curr Appl Phys 12(3):854–859Google Scholar
  78. 78.
    Matsumoto F (2012) Ethanol and methanol oxidation activity of PtPb, PtBi, and PtBi2 intermetallic compounds in alkaline media. Electrochemistry 80(3):132–138Google Scholar
  79. 79.
    Tusi MM, Polanco NSO, da Silva SG, Spinace EV, Neto AO (2011) The high activity of PtBi/C electrocatalysts for ethanol electro-oxidation in alkaline medium. Electrochem Commun 13(2):143–146Google Scholar
  80. 80.
    Han XY, Wang DW, Liu D, Huang JS, You TY (2012) Synthesis and electrocatalytic activity of Au/Pt bimetallic nanodendrites for ethanol oxidation in alkaline medium. J Colloid Interface Sci 367:342–347Google Scholar
  81. 81.
    Dutta A, Mahapatra SS, Datta J (2011) High performance PtPdAu nano-catalyst for ethanol oxidation in alkaline media for fuel cell applications. Int J Hydrogen Energy 36(22):14898–14906Google Scholar
  82. 82.
    Datta J, Dutta A, Mukherjee S (2011) The beneficial role of the Cometals Pd and Au in the carbon-supported PtPdAu catalyst toward promoting ethanol oxidation kinetics in alkaline fuel cells: temperature effect and reaction mechanism. J Phys Chem C 115(31):15324–15334Google Scholar
  83. 83.
    Chen YG, Zhuang L, Lu JT (2007) Non-Pt anode catalysts for alkaline direct alcohol fuel cells. Chinese J Catal 28(10):870–874Google Scholar
  84. 84.
    He QG, Chen W, Mukerjee S, Chen SW, Laufek F (2009) Carbon-supported PdM (M = Au and Sn) nanocatalysts for the electrooxidation of ethanol in high pH media. J Power Sources 187(2):298–304Google Scholar
  85. 85.
    Jou LS, Chang JK, Twhang TJ, Sun IW (2009) Electrodeposition of palladium-copper films from 1-ethyl-3-methylimidazolium chloride-tetrafluoroborate ionic liquid on indium tin oxide electrodes. J Electrochem Soc 156(6):D193–D197Google Scholar
  86. 86.
    Du WX, Mackenzie KE, Milano DF, Deskins NA, Su D, Teng XW (2012) Palladium-tin alloyed catalysts for the ethanol oxidation reaction in an alkaline medium. ACS Catal 2(2): 287–297Google Scholar
  87. 87.
    Nguyen ST, Tan DSL, Lee JM, Chan SH, Wang JY, Wang X (2011) Tb promoted Pd/C catalysts for the electrooxidation of ethanol in alkaline media. Int J Hydrogen Energy 36(16):9645–9652Google Scholar
  88. 88.
    Oliveira MC, Rego R, Fernandes LS, Tavares PB (2011) Evaluation of the catalytic activity of Pd-Ag alloys on ethanol oxidation and oxygen reduction reactions in alkaline medium. J Power Sources 196(15):6092–6098Google Scholar
  89. 89.
    Xu CW, Shen PK (2005) Electrochemical oxidation of ethanol on Pt-CeO2/C catalysts. J Power Sources 142(1–2):27–29Google Scholar
  90. 90.
    Bai YX, Wu JJ, Xi JY, Wang JS, Zhu WT, Chen LQ, Qiu XP (2005) Electrochemical oxidation of ethanol on Pt-ZrO2/C catalyst. Electrochem Commun 7(11):1087–1090Google Scholar
  91. 91.
    Xu CW, Shen PK, Ji XH, Zeng R, Liu YL (2005) Enhanced activity for ethanol electro oxidation on Pt-MgO/C catalysts. Electrochem Commun 7(12):1305–1308Google Scholar
  92. 92.
    Shen PK, Xu CW (2006) Alcohol oxidation on nanocrystalline oxide Pd/C promoted electrocatalysts. Electrochem Commun 8(1):184–188Google Scholar
  93. 93.
    Hu FP, Chen CL, Wang ZY, Wei GY, Shen PK (2006) Mechanistic study of ethanol oxidation on Pd-NiO/C electrocatalyst. Electrochim Acta 52(3):1087–1091Google Scholar
  94. 94.
    Xu CW, Shen PK, Liu YL (2007) Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide. J Power Sources 164(2):527–531Google Scholar
  95. 95.
    Xu CW, Tian ZQ, Shen PK, Jiang SP (2008) Oxide (CeO2, NiO, Co(3)O(4) and Mn3O4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media. Electrochim Acta 53(5):2610–2618Google Scholar
  96. 96.
    Chu DB, Wang J, Wang SX, Zha LW, He JG, Hou YY, Yan YX, Lin HS, Tian ZW (2009) High activity of Pd-In2O3/CNTs electrocatalyst for electro-oxidation of ethanol. Catal Commun 10(6):955–958Google Scholar
  97. 97.
    Brankovic SR, McBreen J, Adzic RR (2001) Spontaneous deposition of Pd on a Ru(0001) surface. Surf Sci 479(1–3):L363–L368Google Scholar
  98. 98.
    Vitse F, Cooper M, Botte GG (2005) On the use of ammonia electrolysis for hydrogen production. J Power Sources 142(1–2):18–26Google Scholar
  99. 99.
    Bambagioni V, Bianchini C, Filippi J, OberhauserIal W, Marchionni A, Vizza F, Psaro R, Sordelli L, Foresti ML, Innocenti M (2009) Ethanol oxidation on electrocatalysts obtained by spontaneous deposition of palladium onto nickel-zinc materials. Chemsuschem 2(1):99–112Google Scholar
  100. 100.
    Kim JW, Park SM (1999) Electrochemical oxidation of ethanol at thermally prepared RuO2-modified electrodes in alkaline media. J Electrochem Soc 146(3):1075–1080Google Scholar
  101. 101.
    Kim JW, Park SM (2003) In situ XANES studies of electrodeposited nickel oxide films with metal additives for the electro-oxidation of ethanol. J Electrochem Soc 150(11):E560–E566Google Scholar
  102. 102.
    Shieh DT, Hwang BJ (1995) Kinetics for electrooxidation of ethanol on thermally prepared ruthenium oxide in alkaline-solution. J Electrochem Soc 142(3):816–823Google Scholar
  103. 103.
    Ta KP, Newman J (1998) Mass transfer and kinetic phenomena at the nickel hydroxide electrode. J Electrochem Soc 145(11):3860–3874Google Scholar
  104. 104.
    Beden B, Cetin I, Kahyaoglu A, Takky D, Lamy C (1987) Electrocatalytic oxidation of saturated oxygenated compounds on gold electrodes. J Catal 104(1):37–46Google Scholar
  105. 105.
    Chang SC, Ho YH, Weaver MJ (1991) Applications of real-time FTIR spectroscopy to the elucidation of complex electroorganic pathways – electrooxidation of ethylene-glycol on gold, platinum, and nickel in alkaline-solution. J Am Chem Soc 113(25):9506–9513Google Scholar
  106. 106.
    Hahn F, Beden B, Kadirgan F, Lamy C (1987) Electrocatalytic oxidation of ethylene-glycol. 3. In-situ infrared reflectance spectroscopic study of the strongly bound species resulting from its chemisorption at a platinum-electrode in aqueous-medium. J Electroanal Chem 216(1–2): 169–180Google Scholar
  107. 107.
    Christensen PA, Hamnett A (1989) The oxidation of ethylene-glycol at a platinum-electrode in acid and base – an in situ FTIR study. J Electroanal Chem 260(2):347–359Google Scholar
  108. 108.
    Matsuoka K, Iriyama Y, Abe T, Matsuoka M, Ogumi Z (2005) Electro-oxidation of methanol and ethylene glycol on platinum in alkaline solution: poisoning effects and product analysis. Electrochim Acta 51(6):1085–1090Google Scholar
  109. 109.
    Kohlmuller H (1977) Anodic-oxidation of ethylene-glycol with noble-metal alloy catalysts. J Power Sources 1(3):249–256Google Scholar
  110. 110.
    Dalbay N, Kadirgan F (1991) Electrolytically Co-deposited platinum palladium electrodes and their electrocatalytic activity for ethylene-glycol oxidation – a synergistic effect. Electrochim Acta 36(2):353–356Google Scholar
  111. 111.
    Kadirgan F, Beden B, Lamy C (1983) Electrocatalytic oxidation of ethylene-glycol. 2. Behavior of platinum-Ad-atom electrodes in alkaline-medium. J Electroanal Chem 143(1–2):135–152Google Scholar
  112. 112.
    Elshafei AA, Shabanah HM, Moussa MNH (1993) Catalytic influence of underpotentially deposited submonolayers of different metals in ethylene-glycol oxidation on various noble-metal electrodes in alkaline-medium. J Power Sources 46(1):17–27Google Scholar
  113. 113.
    Demarconnay L, Brimaud S, Coutanceau C, Leger JM (2007) Ethylene glycol electrooxidation in alkaline medium at multi-metallic Pt based catalysts. J Electroanal Chem 601(1–2):169–180Google Scholar
  114. 114.
    Miyazaki K, Matsumiya T, Abe T, Kurata H, Fukutsuka T, Kojima K, Ogumi Z (2011) Electrochemical oxidation of ethylene glycol on Pt-based catalysts in alkaline solutions and quantitative analysis of intermediate products. Electrochim Acta 56(22):7610–7614Google Scholar
  115. 115.
    Beden B, Kadirgan F, Kahyaoglu A, Lamy C (1982) Electrocatalytic oxidation of ethylene-glycol in alkaline-medium on platinum-gold alloy electrodes modified by underpotential deposition of lead adatoms. J Electroanal Chem 135(2):329–334Google Scholar
  116. 116.
    Elshafei AA, Elmaksoud SAA, Fouda AS (1995) Noble-metal-modified glassy-carbon electrodes for ethylene-glycol oxidation in alkaline-medium. J Electroanal Chem 395(1–2): 181–187Google Scholar
  117. 117.
    Jin CC, Song YS, Chen ZD (2009) A comparative study of the electrocatalytic oxidation of ethylene glycol on PtAu nanocomposite catalysts in alkaline, neutral and acidic media. Electrochim Acta 54(16):4136–4140Google Scholar
  118. 118.
    Moller H, Pistorius PC (2004) The electrochemistry of gold-platinum alloys. J Electroanal Chem 570(2):243–255Google Scholar
  119. 119.
    Kadirgan F, Bouhiercharbonnier E, Lamy C, Leger JM, Beden B (1990) Mechanistic study of the electrooxidation of ethylene-glycol on gold and adatom-modified gold electrodes in alkaline-medium. J Electroanal Chem 286(1–2):41–61Google Scholar
  120. 120.
    Matsuoka K, Iriyama Y, Abe T, Matsuoka M, Ogumi Z (2005) Electrocatalytic oxidation of ethylene glycol in alkaline solution. J Electrochem Soc 152(4):A729–A731Google Scholar
  121. 121.
    Demarconnay L, Coutanceau C, Leger JM (2008) Study of the oxygen electroreduction at nanostructured PtBi catalysts in alkaline medium. Electrochim Acta 53(8):3232–3241Google Scholar
  122. 122.
    Miyazaki K, Sugimura N, Matsuoka K, Iriyama Y, Abe T, Matsuoka M, Ogumi Z (2008) Perovskite-type oxides La1-xSrxMnO3 for cathode catalysts in direct ethylene glycol alkaline fuel cells. J Power Sources 178(2):683–686Google Scholar
  123. 123.
    Hou HY, Sun GQ, He RH, Wu ZM, Sun BY (2008) Alkali doped polybenzimidazole membrane for high performance alkaline direct ethanol fuel cell. J Power Sources 182(1):95–99Google Scholar
  124. 124.
    Hou HY, Sun GQ, He RH, Sun BY, Jin W, Liu H, Xin Q (2008) Alkali doped polybenzimidazole membrane for alkaline direct methanol fuel cell. Int J Hydrogen Energy 33(23): 7172–7176Google Scholar
  125. 125.
    Varcoe JR, Slade RCT (2006) An electron-beam-grafted ETFE alkaline anion-exchange membrane in metal-cation-free solid-state alkaline fuel cells. Electrochem Commun 8(5): 839–843Google Scholar
  126. 126.
    Yang CC, Chiu SJ, Chien WC (2006) Development of alkaline direct methanol fuel cells based on crosslinked PVA polymer membranes. J Power Sources 162(1):21–29Google Scholar
  127. 127.
    Yang CC, Chiu SJ, Lee KT, Chien WC, Lin CT, Huang CA (2008) Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell. J Power Sources 184(1):44–51Google Scholar
  128. 128.
    Yang CC, Lin CT, Chiu SJ (2008) Preparation of the PVA/HAP composite polymer membrane for alkaline DMFC application. Desalination 233(1–3):137–146Google Scholar
  129. 129.
    Varcoe JR, Slade RCT, Yee ELH, Poynton SD, Driscoll DJ (2007) Investigations into the ex situ methanol, ethanol and ethylene glycol permeabilities of alkaline polymer electrolyte membranes. J Power Sources 173(1):194–199Google Scholar
  130. 130.
    Ogumi Z, Matsuoka K, Chiba S, Matsuoka M, Iriyama Y, Abe T, Inaba M (2002) Preliminary study on direct alcohol fuel cells employing anion exchange membrane. Electrochemistry 70(12): 980–983Google Scholar
  131. 131.
    Yu EH, Scott K (2004) Direct methanol alkaline fuel cell with catalysed metal mesh anodes. Electrochem Commun 6(4):361–365Google Scholar
  132. 132.
    Fujiwara N, Siroma Z, Yamazaki SI, Ioroi T, Senoh H, Yasuda K (2008) Direct ethanol fuel cells using an anion exchange membrane. J Power Sources 185(2):621–626Google Scholar
  133. 133.
    Kim J, Momma T, Osaka T (2009) Cell performance of Pd-Sn catalyst in passive direct methanol alkaline fuel cell using anion exchange membrane. J Power Sources 189(2): 999–1002Google Scholar
  134. 134.
    Bianchini C, Bambagioni V, Filippi J, Marchionni A, Vizza F, Bert P, Tampucci A (2009) Selective oxidation of ethanol to acetic acid in highly efficient polymer electrolyte membrane-direct ethanol fuel cells. Electrochem Commun 11(5):1077–1080Google Scholar
  135. 135.
    Modestov AD, Tarasevich MR, Leykin AY, Filimonov VY (2009) MEA for alkaline direct ethanol fuel cell with alkali doped PBI membrane and non-platinum electrodes. J Power Sources 188(2):502–506Google Scholar
  136. 136.
    Shen SY, Zhao TS, Xu JB, Li YS (2010) Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells. J Power Sources 195(4):1001–1006Google Scholar
  137. 137.
    Li YS, Zhao TS, Liang ZX (2009) Effect of polymer binders in anode catalyst layer on performance of alkaline direct ethanol fuel cells. J Power Sources 190(2):223–229Google Scholar
  138. 138.
    Bambagioni V, Bianchini C, Marchionni A, Filippi J, Vizza F, Teddy J, Serp P, Zhiani M (2009) Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol = methanol, ethanol, glycerol). J Power Sources 190(2):241–251Google Scholar
  139. 139.
    Li YS, Zhao TS, Liang ZX (2009) Performance of alkaline electrolyte-membrane-based direct ethanol fuel cells. J Power Sources 187(2):387–392Google Scholar
  140. 140.
    Prabhuram J, Manoharan R (1998) Investigation of methanol oxidation on unsupported platinum electrodes in strong alkali and strong acid. J Power Sources 74(1):54–61Google Scholar
  141. 141.
    Yu EH, Scott K, Reeve RW, Yang LX, Allen RG (2004) Characterisation of platinised Ti mesh electrodes using electrochemical methods: methanol oxidation in sodium hydroxide solutions. Electrochim Acta 49(15):2443–2452Google Scholar
  142. 142.
    Varcoe JR, Slade RCT (2005) Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells 5(2):187–200Google Scholar
  143. 143.
    Antolini E, Giorgi L, Pozio A, Passalacqua E (1999) Influence of Nafion loading in the catalyst layer of gas-diffusion electrodes for PEFC. J Power Sources 77(2):136–142Google Scholar
  144. 144.
    Bunazawa H, Yamazaki Y (2008) Influence of anion ionomer content and silver cathode catalyst on the performance of alkaline membrane electrode assemblies (MEAs) for direct methanol fuel cells (DMFCs). J Power Sources 182(1):48–51Google Scholar
  145. 145.
    Cifrain M, Kordesch KV (2004) Advances, aging mechanism and lifetime in AFCs with circulating electrolytes. J Power Sources 127(1–2):234–242Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Scuola di Scienza dei MaterialiCogoletoItaly
  2. 2.Universidade de São Paulo, IQSCSão CarlosBrazil

Personalised recommendations