Skip to main content

Palladium-Based Electrocatalysts for Oxygen Reduction Reaction

  • Chapter
  • First Online:
Electrocatalysis in Fuel Cells

Part of the book series: Lecture Notes in Energy ((LNEN,volume 9))

Abstract

Fuel cells are clean energy devices that are expected to help address the energy and environmental problems in our society. Platinum-based nanomaterials are usually used as the electrocatalysts for both the anode (hydrogen oxidation) and cathode (oxygen reduction) reactions. The high cost and limited resources of this precious metal hinder the commercialization of fuel cells. Recent efforts have focused on the discovery of palladium-based electrocatalysts with little or no platinum for oxygen reduction reaction (ORR). This chapter overviews the recent progress of electrocatalysis of palladium-based materials including both extended surfaces and nanostructured ones for ORR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adzic RR, Zhang J, Sasaki K, Vukmirovic MB, Shao M, Wang JX, Nilekar AU, Mavrikakis M, Valerio JA, Uribe F (2007) Platinum monolayer fuel cell electrocatalysts. Top Catal 46(3–4): 249–262

    Article  Google Scholar 

  2. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt Oxygen reduction catalysts for PEMFCs. Appl Catal B Environ 56(1–2):9–35

    Article  Google Scholar 

  3. Lefevre M, Proietti E, Jaouen F, Dodelet JP (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324(5923):71–74

    Article  Google Scholar 

  4. www.monex.com

    Google Scholar 

  5. Antolini E (2009) Palladium in fuel cell catalysis. Energy Environ Sci 2(9):915–931

    Article  Google Scholar 

  6. Bianchini C, Shen PK (2009) Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem Rev 109(9):4183–4206

    Article  Google Scholar 

  7. Shao M (2011) Palladium-based electrocatalysts for hydrogen oxidation and oxygen reduction reactions. J Power Sources 196(5):2433–2444

    Article  Google Scholar 

  8. Adzic RR (1998) Electrocatalysis. In: Lipkowski J, Ross PN (eds) Frontiers in electrochemistry, vol 5. Wiley, New York, p 197

    Google Scholar 

  9. Shao MH, Liu P, Adzic RR (2006) Superoxide is the intermediate in the oxygen reduction reaction on platinum electrode. J Am Chem Soc 128:7408–7409

    Article  Google Scholar 

  10. Tarasevich MR, Sadkowski A, Yeager E (1983) Oxygen electrochemistry. In: Conway BE, Bockris JO, Yeager E, Khan SUM, White RE (eds) Comprehensive treatise of electrochemistry, vol 7. Plenum, New York, p 301

    Chapter  Google Scholar 

  11. Zhang J, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR (2005) Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew Chem Int Ed 44:2132–2135

    Article  Google Scholar 

  12. Xu Y, Greeley J, Mavrikakis M (2005) Effect of subsurface oxygen on the reactivity of the Ag(111) surface. J Am Chem Soc 127(37):12823–12827

    Article  Google Scholar 

  13. Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Nørskov JK (2006) Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem Int Ed 45(18):2897–2901

    Article  Google Scholar 

  14. Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493

    Article  Google Scholar 

  15. Norskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108: 17886–17892

    Article  Google Scholar 

  16. Damjanovic A, Brusic V (1967) Oxygen reduction at Pt-Au and Pd-Au alloy electrodes in acid solution. Electrochim Acta 12(9):1171–1184

    Article  Google Scholar 

  17. Markovic NM, Adzic RR, Cahan BD, Yeager EB (1994) Structural effects in electrocatalysis – oxygen reduction on platinum low-index single-crystal surfaces in perchloric-acid solutions. J Electroanal Chem 377(1–2):249–259

    Google Scholar 

  18. Kondo S, Nakamura M, Maki N, Hoshi N (2009) Active sites for the oxygen reduction reaction on the low and high index planes of palladium. J Phys Chem C 113(29):12625–12628

    Article  Google Scholar 

  19. Shao MH, Huang T, Liu P, Zhang J, Sasaki K, Vukmirovic MB, Adzic RR (2006) Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction. Langmuir 22(25): 10409–10415

    Article  Google Scholar 

  20. Jalan VM, Luczak FJ, Lee J (1980) US Patent 4192967

    Google Scholar 

  21. Landsman DA, Luczak FJ (1982) US Patent 4316944

    Google Scholar 

  22. Landsman DA, Luczak FJ (2003) Catalyst studies and coating technologies. In: Vielstich W, Gasteiger H, Lamm A (eds) Handbook of fuel cells, vol 4. Wiley, p 811

    Google Scholar 

  23. Jalan V, Taylor EJ (1983) Importance of interatomic spacing in catalytic reduction of oxygen in phosphoric acid. J Electrochem Soc 130:2299

    Article  Google Scholar 

  24. Paffett MT, Beery JG, Gottesfeld S (1988) Oxygen reduction at Pt0.65Cr0.35, Pt0.2Cr0.8 and roughened platinum. J Electrochem Soc 135(6):1431

    Article  Google Scholar 

  25. Mukerjee S, Srinivasan S, Soriaga M, McBreen J (1995) Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction. J Electrochem Soc 142(5):1409

    Article  Google Scholar 

  26. Toda T, Igarashi H, Uchida H, Watanabe M (1999) Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J Electrochem Soc 146(10):3750

    Article  Google Scholar 

  27. Toda T, Igarashi H, Watanabe M (1998) Role of electronic property of Pt and Pt alloys on electrocatalytic reduction of oxygen. J Electrochem Soc 145(12):4185

    Article  Google Scholar 

  28. Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Markovic NM, Ross PN (2002) Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes. Electrochim Acta 47(22–23):3787–3798

    Article  Google Scholar 

  29. Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Radmilovic V, Markovic NM, Ross PN (2002) Oxygen reduction on carbon-supported Pt-Ni and Pt-Co alloy catalysts. J Phys Chem B 106:4181

    Article  Google Scholar 

  30. Hammer B, Nørskov JK (1995) Electronic factors determining the reactivity of metal surfaces. Surf Sci 343:211

    Article  Google Scholar 

  31. Hammer B, Nørskov JK (2000) Theoretical surface science and catalysis calculations and concepts. Adv Catal 45:71

    Article  Google Scholar 

  32. Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2004) Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys Rev Lett 93(15):156801

    Article  Google Scholar 

  33. Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2004) Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J Chem Phys 120(21): 10240

    Article  Google Scholar 

  34. Greeley J, Nørskov JK, Mavrikakis M (2002) Electronic structure and catalysis on metal surfaces. Annu Rev Phys Chem 53:319–348

    Article  Google Scholar 

  35. Xu Y, Ruban AV, Mavrikakis M (2004) Adsorption and dissociation of O2 on Pt- Co and Pt-Fe alloys. J Am Chem Soc 126:4714

    Google Scholar 

  36. Savadogo O, Lee K, Oishi K, Mitsushima S, Kamiya N, Ota KI (2004) New palladium alloys catalyst for the oxygen reduction reaction in an acid medium. Electrochem Commun 6(2): 105–109

    Article  Google Scholar 

  37. Fernandez JL, Raghuveer V, Manthiram A, Bard AJ (2005) Pd-Ti and Pd-Co-Au electrocatalysts as a replacement for platinum for oxygen reduction in proton exchange membrane fuel cells. J Am Chem Soc 127:13100–13101

    Article  Google Scholar 

  38. Fernandez JL, Walsh DA, Bard AJ (2005) Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy. J Am Chem Soc 127:357–365

    Article  Google Scholar 

  39. Fernandez JL, White JM, Sun YM, Tang WJ, Henkelman G, Bard AJ (2006) Characterization and theory of electrocatalysts based on scanning electrochemical microscopy screening methods. Langmuir 22(25):10426–10431

    Article  Google Scholar 

  40. Wang W, Zheng D, Du C, Zou Z, Zhang X, Xia B, Yang H, Akins DL (2007) Carbon-supported Pd-Co bimetallic nanoparticles as electrocatalysts for the oxygen reduction reaction. J Power Sources 167(2):243–249

    Article  Google Scholar 

  41. Zhang L, Lee K, Zhang JJ (2007) The effect of heat treatment on nanoparticle size and ORR activity for carbon-supported Pd-Co alloy electrocatalysts. Electrochim Acta 52(9):3088–3094

    Article  MathSciNet  Google Scholar 

  42. Shao MH, Sasaki K, Adzic RR (2006) Pd-Fe nanoparticles as electrocatalysts for oxygen reduction. J Am Chem Soc 128(11):3526

    Article  Google Scholar 

  43. Wang RF, Liao SJ, Fu ZY, Ji S (2008) Platinum free ternary electrocatalysts prepared via organic colloidal method for oxygen reduction. Electrochem Commun 10(4):523–526

    Article  MATH  Google Scholar 

  44. Tarasevich MR, Zhutaeva GV, Bogdanovskaya VA, Radina MV, Ehrenburg MR, Chalykh AE (2007) Oxygen kinetics and mechanism at electrocatalysts on the base of palladium-iron system. Electrochim Acta 52(15):5108–5118

    Article  Google Scholar 

  45. Song SQ, Wang Y, Tsiakaras P, Shen PK (2008) Direct alcohol fuel cells: a novel non-platinum and alcohol inert ORR electrocatalyst. Appl Catal B Environ 78(3–4):381–387

    Article  Google Scholar 

  46. Xu Y, Shao MH, Mavrikakis M, Adzic RR (2009) Recent developments in the electrocatalysis of the O2 reduction reaction. In: Koper MTM (ed) Fuel cell catalysis: a surface science approach. Wiley, Hoboken, pp 271–316

    Chapter  Google Scholar 

  47. Sarkar A, Murugan AV, Manthiram A (2009) Low cost Pd-W nanoalloy electrocatalysts for oxygen reduction reaction in fuel cells. J Mater Chem 19:159–165

    Article  Google Scholar 

  48. Serov AA, Cho S-Y, Han S, Min M, Chai G, Nam KH, Kwak C (2007) Modification of palladium-based catalysts by chalcogenes for direct methanol fuel cells. Electrochem Commun 9(8):2041–2044

    Article  Google Scholar 

  49. Cheng L, Zhang Z, Niu W, Xu G, Zhu L (2008) Carbon-supported Pd nanocatalyst modified by non-metal phosphorus for the oxygen reduction reaction. J Power Sources 182(1):91–94

    Article  Google Scholar 

  50. Li H, Sun G, Li N, Sun S, Su D, Xin Q (2007) Design and preparation of highly active Pt-Pd/C catalyst for the oxygen reduction reaction. J Phys Chem C 111(15):5605–5617

    Article  Google Scholar 

  51. Guerin S, Hayden BE, Lee CE, Mormiche C, Russell AE (2006) High-throughput synthesis and screening of ternary metal alloys for electrocatalysis. J Phys Chem B 110(29): 14355–14362

    Article  Google Scholar 

  52. Ye HC, Crooks RM (2007) Effect of elemental composition of PtPd bimetallic nanoparticles containing an average of 180 atoms on the kinetics of the electrochemical oxygen reduction reaction. J Am Chem Soc 129(12):3627–3633

    Article  Google Scholar 

  53. Raghuveer V, Manthiram A, Bard AJ (2005) Pd-Co-Mo electrocatalyst for the oxygen reduction reaction in proton exchange membrane fuel cells. J Phys Chem B 109(48): 22909–22912

    Article  Google Scholar 

  54. Mathiyarasuz J, Phani KLN (2007) Carbon-supported palladium-cobalt-noble metal (Au, Ag, Pt) nanocatalysts as methanol tolerant oxygen-reduction cathode materials in DMFCs. J Electrochem Soc 154:B1100–B1105

    Article  Google Scholar 

  55. Wang XP, Kariuki N, Vaughey JT, Goodpaster J, Kumar R, Myers DJ (2008) Bimetallic Pd-Cu oxygen reduction electrocatalysts. J Electrochem Soc 155(6):B602–B609

    Article  Google Scholar 

  56. Myers DJ (2008) In: DOE hydrogen and fuel cell review meeting, Arlington, VA

    Google Scholar 

  57. Raghuveer V, Ferreira PJ, Manthiram A (2006) Comparison of Pd-Co-Au electrocatalysts prepared by conventional borohydride and microemulsion methods for oxygen reduction in fuel cells. Electrochem Commun 8(5):807–814

    Article  Google Scholar 

  58. Liu H, Manthiram A (2008) Tuning the electrocatalytic activity and durability of low cost Pd70Co30 nanoalloy for oxygen reduction reaction in fuel cells. Electrochem Commun 10(5): 740–744

    Article  Google Scholar 

  59. Xiao L, Zhuang L, Liu Y, Lu J, Abruna HD (2008) Activating Pd by morphology tailoring for oxygen reduction. J Am Chem Soc 131(2):602–608

    Article  Google Scholar 

  60. Li WZ, Haldar P (2009) Supportless PdFe nanorods as highly active electrocatalyst for proton exchange membrane fuel cell. Electrochem Commun 11(6):1195–1198

    Article  Google Scholar 

  61. Shao MH Unpublished data

    Google Scholar 

  62. Erikson H, Sarapuu A, Tammeveski K, Solla-Gullon J, Feliu JM (2011) Enhanced electrocatalytic activity of cubic Pd nanoparticles towards the oxygen reduction reaction in acid media. Electrochem Commun 13(7):734–737

    Article  Google Scholar 

  63. Shao M, Yu T, Odell JH, Jin M, Xia Y (2011) Structural dependence of oxygen reduction reaction on palladium nanocrystals. Chem Commun 47(23):6566–6568

    Article  Google Scholar 

  64. Chierchie T, Mayer C (1988) Voltammetric study of the underpotential deposition of copper on polycrystalline and single crystal palladium surfaces. Electrochim Acta 33(3):341–345

    Article  Google Scholar 

  65. Lima FHB, Zhang J, Shao M, Sasaki K, Vukmirovic B, Ticianelli EA, Adzic RR (2007) Catalytic activity-d-band center correlation for the O2 reduction on Pt in alkaline solutions. J Phys Chem C 111:404–410

    Article  Google Scholar 

  66. Arenz M, Schmidt TJ, Wandelt K, Ross PN, Markovic NM (2003) The oxygen reduction reaction on thin palladium films supported on a Pt(111) electrode. J Phys Chem B 107(36): 9813–9819

    Article  Google Scholar 

  67. Naohara H, Ye S, Uosaki K (2000) Electrocatalytic reactivity for oxygen reduction at epitaxially grown Pd thin layers of various thickness on Au(111) and Au(100). Electrochim Acta 45(20): 3305–3309

    Article  Google Scholar 

  68. Schmidt TJ, Stamenkovic V, Arenz M, Markovic NM, Ross PN (2002) Oxygen electrocatalysis in alkaline electrolyte: Pt(hkl), Au(hkl) and the effect of Pd-modification. Electrochim Acta 47(22–23): 3765–3776

    Article  Google Scholar 

  69. Dursun Z, Ulubay Ş, Gelmez B, Ertaş F (2009) Electrocatalytic reduction of oxygen on a Pd ad-layer modified Au(111) electrode in alkaline solution. Catal Lett 132(1):127–132

    Article  Google Scholar 

  70. Shao M, Sasaki K, Liu P, Adzic RR (2007) Pd3Fe and Pt monolayer-modified Pd3Fe electrocatalysts for oxygen reduction. Z Phys Chem 221:1175–1190

    Article  Google Scholar 

  71. Jiang L, Hsu A, Chu D, Chen R (2009) Size-dependent activity of palladium nanoparticles for oxygen electroreduction in alkaline solutions. J Electrochem Soc 156(5):B643–B649

    Article  Google Scholar 

  72. Kim J, Park JE, Momma T, Osaka T (2009) Synthesis of Pd-Sn nanoparticles by ultrasonic irradiation and their electrocatalytic activity for oxygen reduction. Electrochim Acta 54(12): 3412–3418

    Article  Google Scholar 

  73. Li B, Prakash J (2009) Oxygen reduction reaction on carbon supported palladium-nickel alloys in alkaline media. Electrochem Commun 11(6):1162–1165

    Article  Google Scholar 

  74. Nie M, Shen PK, Wei ZD (2007) Nanocrystalline tungsten carbide supported Au-Pd electrocatalyst for oxygen reduction. J Power Sources 167:69–73

    Article  Google Scholar 

  75. Lu S, Pan J, Huang A, Zhuang L, Lu J (2008) Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Nat Acad Sci Proc 105(52):20611–20614

    Article  Google Scholar 

  76. Catanorchi S, Piana M, Gasteiger HA (2008) Kinetics of non-platinum group metal catalysts for the oxygen reduction reaction in alkaline medium. ECS Trans 16(2):2045–2055

    Google Scholar 

  77. Mustain WE, Kepler K, Prakash J (2007) CoPdx oxygen reduction electrocatalysts for polymer electrolyte membrane and direct methanol fuel cells. Electrochim Acta 52(5):2102–2108

    Article  Google Scholar 

  78. Li HQ, Xin Q, Li WZ, Zhou ZH, Jiang LH, Yang SH, Sun GQ (2004) An improved palladium-based DMFCs cathode catalyst. Chem Commun 23:2776–2777

    Article  Google Scholar 

  79. Lopes T, Antolini E, Gonzalez ER (2008) Carbon supported Pt-Pd alloy as an ethanol tolerant oxygen reduction electrocatalyst for direct ethanol fuel cells. Int J Hydrogen Energy 33(20): 5563–5570

    Article  Google Scholar 

  80. Lee K, Savadogo O, Ishihara A, Mitsushima S, Kamiya N, Ota K (2006) Methanol-tolerant oxygen reduction electrocatalysts based on Pd-3D transition metal alloys for direct methanol fuel cells. J Electrochem Soc 153(1):A20–A24

    Article  Google Scholar 

  81. Mustain WE, Kepler K, Prakash J (2006) Investigations of carbon-supported CoPd3 catalysts as oxygen cathodes in PEM fuel cells. Electrochem Commun 8(3):406–410

    Article  Google Scholar 

  82. Tarasevich M, Bogdanovskaya V, Kuznetsova L, Modestov A, Efremov B, Chalykh A, Chirkov Y, Kapustina N, Ehrenburg M (2007) Development of platinum-free catalyst and catalyst with low platinum content for cathodic oxygen reduction in acidic electrolytes. J Appl Electrochem 37(12):1503–1513

    Article  Google Scholar 

  83. Wang YX, Balbuena PB (2005) Design of oxygen reduction bimetallic catalysts: ab-initio-derived thermodynamic guidelines. J Phys Chem B 109:18902–18906

    Article  Google Scholar 

  84. Fouda-Onana F, Bah S, Savadogo O (2009) Palladium-copper alloys as catalysts for the oxygen reduction reaction in an acidic media I: Correlation between the ORR kinetic parameters and intrinsic physical properties of the alloys. J Electroanal Chem 636(1–2):1–9

    Google Scholar 

  85. Rousset JL, Bertolini JC, Miegge P (1996) Theory of segregation using the equivalent-medium approximation and bond-strength modifications at surfaces: application to fcc Pd-X alloys. Phys Rev B 53(8):4947

    Article  Google Scholar 

  86. Ruban AV, Skriver HL, Nørskov JK (1999) Surface segregation energies in transition-metal alloys. Phys Rev B 59(24):15990

    Article  Google Scholar 

  87. Bozzolo G, Noebe RD, Khalil J, Morse J (2003) Atomistic analysis of surface segregation in Ni-Pd alloys. Appl Surf Sci 219(1–2):149–157

    Article  Google Scholar 

  88. Suo YG, Zhuang L, Lu JT (2007) First-principles considerations in the design of Pd-alloy catalysts for oxygen reduction. Angew Chem Int Ed 46(16):2862–2864

    Article  Google Scholar 

  89. Shao M, Liu P, Zhang J, Adzic RR (2007) Origin of enhanced activity in palladium alloy electrocatalysts for oxygen reduction reaction. J Phys Chem B 111:6772–6775

    Article  Google Scholar 

  90. Zhou W-P, Yang X, Vukmirovic MB, Koel BE, Jiao J, Peng G, Mavrikakis M, Adzic RR (2009) Improving electrocatalysts for O2 reduction by fine-tuning the Pt-support interaction: Pt monolayer on the surfaces of a Pd3Fe(111) single-crystal alloy. J Am Chem Soc 131(35): 12755–12762

    Article  Google Scholar 

  91. Sasaki K, Shao MH, Adzic RR (2009) Dissolution and stabilization of platinum in oxygen cathodes. In: Buchi FN, Inaba M, Schmidt T (eds) Proton exchange membrane fuel cell durability. Springer, New York, pp 7–28

    Google Scholar 

  92. Pourbaix M (1974) Atlas of electrochemical equilibria, 2nd edn. NACE, Houston

    Google Scholar 

  93. Wells PP, Crabb EM, King CR, Wiltshire R, Billsborrow B, Thompsett D, Russell AE (2009) Preparation, structure and stability of Pt and Pd monolayer modified Pd and Pt electrocatalysts. Phys Chem Chem Phys 11:5773–5781

    Article  Google Scholar 

  94. Zhang J, Vukmirovic MB, Sasaki K, Uribe F, Adzic RR (2005) Platinum monolayer electrocatalysts for oxygen reduction: effect of substrates, and long-term stability. J Serb Chem Soc 70(3):513–525

    Article  Google Scholar 

  95. Shao MH, Shoemaker K, Peles A, Kaneko K, Protsailo L (2010) Pt monolayer on porous Pd-Cu alloys as oxygen reduction electrocatalysts. J Am Chem Soc 132(27):9253–9255

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minhua Shao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Shao, M. (2013). Palladium-Based Electrocatalysts for Oxygen Reduction Reaction. In: Shao, M. (eds) Electrocatalysis in Fuel Cells. Lecture Notes in Energy, vol 9. Springer, London. https://doi.org/10.1007/978-1-4471-4911-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4911-8_17

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4910-1

  • Online ISBN: 978-1-4471-4911-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics