Skip to main content

Au Electrocatalysis for Oxygen Reduction

  • Chapter
  • First Online:
Electrocatalysis in Fuel Cells

Part of the book series: Lecture Notes in Energy ((LNEN,volume 9))

Abstract

This chapter reviews the recent advances on the study of the oxygen reduction reaction (ORR) on gold electrodes. The initial part is devoted to the study of the reaction on single-crystal electrodes to determine the effect of the surface structure on the reactivity of gold electrodes for this reaction. The best reactivity is found for the Au(100) electrode in alkaline medium. For the nanoparticle electrodes, the reactivity for this reaction depends on two different effects: size and surface structure effects. Regarding the size effects, the different studies found in the literature do not agree on whether the size of the nanoparticles has a significant impact on the reactivity for the ORR. This disagreement between different authors is probably due to the lack of control of the surface structure of the nanoparticles. On the other hand, significant effects are found when the surface of the nanoparticle is changed. In general, the reactivity in alkaline media increases as the fraction of {100} domains on the surface increases. In some cases, the reactivity of gold in alkaline medium is similar to that measured for platinum electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adzic RR (1998) Recent advances in the kinetics of oxygen reduction. In: Lipkowski J, Ross PN (eds) Electrocatalysis. Wiley, New York, pp 197–242

    Google Scholar 

  2. Anastasijević NA, Vesović V, Adžić RR (1987) Determination of the kinetic parameters of the oxygen reduction reaction using the rotating ring-disk electrode: Part I. Theory. J Electroanal Chem 229(1–2):305–316

    Google Scholar 

  3. Anastasijević NA, Vesović V, Adžić RR (1987) Determination of the kinetic parameters of the oxygen reduction reaction using the rotating ring-disk electrode: Part II. Applications. J Electroanal Chem 229(1–2):317–325

    Google Scholar 

  4. Alvarez-Rizatti M, Jüttner K (1983) Electrocatalysis of oxygen reduction by UPD of lead on gold single-crystal surfaces. J Electroanal Chem 144(1–2):351–363

    Article  Google Scholar 

  5. Sayed SM, Jüttner K (1983) Electrocatalysis of oxygen and hydrogen peroxide reduction by UPD of bismuth on poly- and mono-crystalline gold electrodes in acid solutions. Electrochim Acta 28(11):1635–1641

    Article  Google Scholar 

  6. Adžić RR, Marković NM (1982) Structural effects in electrocatalysis: oxygen and hydrogen peroxide reduction on single crystal gold electrodes and the effects of lead ad-atoms. J Electroanal Chem 138(2):443–447

    Article  Google Scholar 

  7. Markovic NM, Adzic RR, Vesovic VB (1984) Structural effects in electrocatalysis Oxygen reduction on the gold single crystal electrodes with (110) and (111) orientations. J Electroanal Chem 165:121–133

    Article  Google Scholar 

  8. Adžić RR, Marković NM, Vesović VB (1984) Structural effects in electrocatalysis. Oxygen reduction on the Au (100) single crystal electrode. J Electroanal Chem 165(1–2):105–120

    Google Scholar 

  9. Štrbac S, Adžić RR (1992) Oscillatory phenomena in oxygen and hydrogen peroxide reduction on the Au(100) electrode surface in alkaline solutions. J Electroanal Chem 337(1–2):355–364

    Google Scholar 

  10. Štrbac S, Anastasijević NA, Adžić RR (1992) Oxygen reduction on Au (100) and vicinal Au (910) and Au (11, 1, 1) faces in alkaline solution: a rotating disc-ring study. J Electroanal Chem 323(1–2):179–195

    Google Scholar 

  11. Polewska W, Vitus CM, Ocko BM, Adzic RR (1994) Direct observation of the Au(100) reconstruction during the course of O2 reduction in alkaline solution. J Electroanal Chem 364(1–2):265–269

    Google Scholar 

  12. Štrbac S, Anastasijević NA, Adžić RR (1994) Oxygen reduction on Au(111) and vicinal Au(332) faces: a rotating disc and disc-ring study. Electrochim Acta 39(7):983–990

    Article  Google Scholar 

  13. Prieto A, Hernández J, Herrero E, Feliu JM (2003) The role of anions in oxygen reduction in neutral and basic media on gold single-crystal electrodes. J Solid State Electrochem 7(9):599–606

    Article  Google Scholar 

  14. Koper MTM (1998) Non-linear phenomena in electrochemical systems. J Chem Soc Faraday Trans 94(10):1369–1378

    Article  Google Scholar 

  15. Štrbac S, Adžić RR (1996) The influence of OH- chemisorption on the catalytic properties of gold single crystal surfaces for oxygen reduction in alkaline solutions. J Electroanal Chem 403(1–2):169–181

    Google Scholar 

  16. Anastasijević NA, Štrbac S, Adžić RR (1988) Oxygen reduction on the Au (311) electrode surface in alkaline electrolyte. J Electroanal Chem 240(1–2):239–252

    Google Scholar 

  17. Strbac S, Adzic RR (1996) The influence of pH on reaction pathways for O-2 reduction on the Au(1 00) face. Electrochim Acta 41(18):2903–2908

    Article  Google Scholar 

  18. Wu B-l, Lei H-w, Cha C-s, Chen Y-y (1994) Investigation of the intermediates of the O2 reduction reaction on Au electrodes in alkaline solution. J Electroanal Chem 377(1–2):227–230

    Google Scholar 

  19. Vassilev P, Koper MTM (2007) Electrochemical reduction of oxygen on gold surfaces: a density functional theory study of intermediates and reaction paths. J Phys Chem C 111(6):2607–2613

    Article  Google Scholar 

  20. Blizanac BB, Lucas CA, Gallagher ME, Arenz M, Ross PN, Marković NM (2003) Anion adsorption, CO oxidation, and oxygen reduction reaction on a Au(100) surface: the pH effect. J Phys Chem B 108(2):625–634

    Article  Google Scholar 

  21. Sarapuu A, Tammeveski K, Tenno TT, Sammelselg V, Kontturi K, Schiffrin DJ (2001) Electrochemical reduction of oxygen on thin-film Au electrodes in acid solution. Electrochem Commun 3(8):446–450

    Article  Google Scholar 

  22. El-Deab MS, Ohsaka T (2002) An extraordinary electrocatalytic reduction of oxygen on gold nanoparticles-electrodeposited gold electrodes. Electrochem Commun 4(4):288–292

    Article  Google Scholar 

  23. Zhang Y, Asahina S, Yoshihara S, Shirakashi T (2003) Oxygen reduction on Au nanoparticle deposited boron-doped diamond films. Electrochim Acta 48(6):741–747

    Article  Google Scholar 

  24. El-Deab MS, Ohsaka T (2002) Hydrodynamic voltammetric studies of the oxygen reduction at gold nanoparticles-electrodeposited gold electrodes. Electrochim Acta 47(26):4255–4261

    Article  Google Scholar 

  25. El-Deab MS, Ohsaka T (2003) Electrocatalysis by nanoparticles: oxygen reduction on gold nanoparticles-electrodeposited platinum electrodes. J Electroanal Chem 553(suppl):107–115

    Google Scholar 

  26. El-Deab MS, Okajima T, Ohsaka T (2003) Electrochemical reduction of oxygen on gold nanoparticle-electrodeposited glassy carbon electrodes. J Electrochem Soc 150(7):A851–A857

    Article  Google Scholar 

  27. Yagi I, Ishida T, Uosaki K (2004) Electrocatalytic reduction of oxygen to water at Au nanoclusters vacuum-evaporated on boron-doped diamond in acidic solution. Electrochem Commun 6(8):773–779

    Article  Google Scholar 

  28. Guerin S, Hayden BE, Pletcher D, Rendall ME, Suchsland JP (2006) A combinatorial approach to the study of particle size effects on supported electrocatalysts: oxygen reduction on gold. J Comb Chem 8(5):679–686

    Article  Google Scholar 

  29. Bron M (2008) Carbon black supported gold nanoparticles for oxygen electroreduction in acidic electrolyte solution. J Electroanal Chem 624(1–2):64–68

    Google Scholar 

  30. Sarapuu A, Nurmik M, Mandar H, Rosental A, Laaksonen T, Kontturi K, Schiffrin DJ, Tammeveski K (2008) Electrochemical reduction of oxygen on nanostructured gold electrodes. J Electroanal Chem 612(1):78–86

    Article  Google Scholar 

  31. Maruyama J, Inaba M, Ogumi Z (1999) Effect of fluorinated alcohol on the kinetics of cathodic oxygen reduction at gold electrodes. Electrochim Acta 45(3):415–422

    Article  Google Scholar 

  32. Maruyama J, Inaba M, Morita T, Ogumi Z (2001) Effects of the molecular structure of fluorinated additives on the kinetics of cathodic oxygen reduction. J Electroanal Chem 504(2):208–216

    Article  Google Scholar 

  33. Tang W, Lin H, Kleiman-Shwarsctein A, Stucky GD, McFarland EW (2008) Size-dependent activity of gold nanoparticles for oxygen electroreduction in alkaline electrolyte. J Phys Chem C 112(28):10515–10519

    Article  Google Scholar 

  34. Inasaki T, Kobayashi S (2009) Particle size effects of gold on the kinetics of the oxygen reduction at chemically prepared Au/C catalysts. Electrochim Acta 54(21):4893–4897

    Article  Google Scholar 

  35. Erikson H, Jürmann G, Sarapuu A, Potter RJ, Tammeveski K (2009) Electroreduction of oxygen on carbon-supported gold catalysts. Electrochim Acta 54(28):7483–7489

    Article  Google Scholar 

  36. Chen W, Chen S (2009) Oxygen electroreduction catalyzed by gold nanoclusters: strong core size effects. Angew Chem Int Ed 48(24):4386–4389

    Article  Google Scholar 

  37. Li Y, Cox JT, Zhang B (2010) Electrochemical responses and electrocatalysis at single Au nanoparticles. J Am Chem Soc 132(9):3047–3054

    Article  Google Scholar 

  38. Lee Y, Loew A, Sun S (2009) Surface- and structure-dependent catalytic activity of Au nanoparticles for oxygen reduction reaction. Chem Mater 22(3):755–761

    Article  Google Scholar 

  39. Alexeyeva N, Matisen L, Saar A, Laaksonen P, Kontturi K, Tammeveski K (2010) Kinetics of oxygen reduction on gold nanoparticle/multi-walled carbon nanotube hybrid electrodes in acid media. J Electroanal Chem 642(1):6–12

    Article  Google Scholar 

  40. Jirkovsky JS, Halasa M, Schiffrin DJ (2010) Kinetics of electrocatalytic reduction of oxygen and hydrogen peroxide on dispersed gold nanoparticles. Phys Chem Chem Phys 12(28):8042–8052

    Article  Google Scholar 

  41. Kinoshita K (1990) Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolytes. J Electrochem Soc 137(3):845–848

    Article  Google Scholar 

  42. Mayrhofer KJJ, Blizanac BB, Arenz M, Stamenkovic VR, Ross PN, Markovic NM (2005) The impact of geometric and surface electronic properties of Pt-catalysts on the particle size effect in electrocatalysis. J Phys Chem B 109(30):14433–14440

    Article  Google Scholar 

  43. Brülle T, Ju W, Niedermayr P, Denisenko A, Paschos O, Schneider O, Stimming U (2011) Size-dependent electrocatalytic activity of gold nanoparticles on HOPG and highly boron-doped diamond surfaces. Molecules 16(12):10059–10077

    Article  Google Scholar 

  44. Greeley J, Rossmeisl J, Hellman A, Nørskov JK (2007) Theoretical trends in particle size effects for the oxygen reduction reaction. Z Phys Chem 221(9–10):1209–1220

    Article  Google Scholar 

  45. Hernández J, Solla-Gullón J, Herrero E (2004) Gold nanoparticles synthesized in a water-in-oil microemulsion: electrochemical characterization and effect of the surface structure on the oxygen reduction reaction. J Electroanal Chem 574(1):185–196

    Article  Google Scholar 

  46. Hernández J, Solla-Gullón J, Herrero E, Feliu JM, Aldaz A (2009) In situ surface characterization and oxygen reduction reaction on shape-controlled gold nanoparticles. J Nanosci Nanotechnol 9(4):2256–2273

    Article  Google Scholar 

  47. Solla-Gullon J, Vidal-Iglesias FJ, Feliu JM (2011) Shape dependent electrocatalysis. Annu Rep Prog Chem C Phys Chem 107:263–297

    Article  Google Scholar 

  48. Koper MTM (2011) Structure sensitivity and nanoscale effects in electrocatalysis. Nanoscale 3(5):2054–2073

    Article  Google Scholar 

  49. Cheng Q, Jiang Y-X, Tian N, Zhou Z-Y, Sun S-G (2010) Electrocatalytic reduction of nitric oxide on Pt nanocrystals of different shape in sulfuric acid solutions. Electrochim Acta 55(27):8273–8279

    Article  Google Scholar 

  50. Vidal-Iglesias FJ, Solla-Gullón J, Rodríguez P, Herrero E, Montiel V, Feliu JM, Aldaz A (2004) Shape-dependent electrocatalysis: ammonia oxidation on platinum nanoparticles with preferential (100) surfaces. Electrochem Commun 6(10):1080–1084

    Article  Google Scholar 

  51. Solla-Gullón J, Vidal-Iglesias FJ, Rodríguez P, Herrero E, Feliu JM, Aldaz A (2006) Shape-dependent electrocatalysis: CO monolayer oxidation at platinum nanoparticles. In: Brisard GM, Adzic R, Birss V, Vieckowski A (eds) Proceedings – Electrochemical Society 2005–11 (Electrocatalysis). The Electrochemical Society, Pennington, NJ, pp 1–11

    Google Scholar 

  52. Solla-Gullón J, Vidal-Iglesias FJ, Herrero E, Feliu JM, Aldaz A (2006) CO monolayer oxidation on semi-spherical and preferentially oriented (100) and (111) platinum nanoparticles. Electrochem Commun 8(1):189–194

    Article  Google Scholar 

  53. Solla-Gullón J, Vidal-Iglesias FJ, López-Cudero A, Garnier E, Feliu JM, Aldaz A (2008) Shape-dependent electrocatalysis: methanol and formic acid electrooxidation on preferentially oriented Pt nanoparticles. Phys Chem Chem Phys 10(25):3689–3698

    Article  Google Scholar 

  54. Sanchez-Sanchez CM, Solla-Gullon J, Vidal-Iglesias FJ, Aldaz A, Montiel V, Herrero E (2010) Imaging structure sensitive catalysis on different shape-controlled platinum nanoparticles. J Am Chem Soc 132(16):5622–5624

    Article  Google Scholar 

  55. Erikson H, Sarapuu A, Tammeveski K, Solla-Gullón J, Feliu JM (2011) Enhanced electrocatalytic activity of cubic Pd nanoparticles towards the oxygen reduction reaction in acid media. Electrochem Commun 13(7):734–737

    Article  Google Scholar 

  56. Adžić RR, Strbac S, Anastasijević N (1989) Electrocatalysis of oxygen on single crystal gold electrodes. Mater Chem Phys 22(3–4):349–375

    Google Scholar 

  57. Marković NM, Adžić RR, Cahan BD, Yeager EB (1994) Structural effects in electrocatalysis: oxygen reduction on platinum low index single-crystal surfaces in perchloric acid solutions. J Electroanal Chem 377(1–2):249–259

    Google Scholar 

  58. Gontard LC, Chang LY, Hetherington CJD, Kirkland AI, Ozkaya D, Dunin-Borkowski RE (2007) Aberration-corrected imaging of active sites on industrial catalyst nanoparticles. Angew Chem Int Ed 46(20):3683–3685

    Article  Google Scholar 

  59. Hamelin A (1996) Cyclic voltammetry at gold single-crystal surfaces. 2. Behaviour of high-index faces. J Electroanal Chem 407(1–2):13–21

    Google Scholar 

  60. Hamelin A (1996) Cyclic voltammetry at gold single-crystal surfaces. 1. Behaviour at low-index faces. J Electroanal Chem 407(1–2):1–11

    Google Scholar 

  61. Herrero E, Buller LJ, Abruna HD (2001) Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem Rev 101(7):1897–1930

    Article  Google Scholar 

  62. Hamelin A (1979) Lead adsorption on gold single crystal stepped surfaces. J Electroanal Chem 101(2):285–290

    Article  Google Scholar 

  63. Hamelin A, Katayama A (1981) Lead underpotential deposition on gold single-crystal surfaces: the (100) face and its vicinal faces. J Electroanal Chem 117(2):221–232

    Article  Google Scholar 

  64. Hamelin A (1984) Underpotential deposition of lead on single crystal faces of gold. Part I. The influence of crystallographic orientation of the substrate. J Electroanal Chem 165(1–2):167–180

    Article  Google Scholar 

  65. Hamelin A, Lipkowski J (1984) Underpotential deposition of lead on gold single crystal faces. Part II. General discussion. J Electroanal Chem 171(1–2):317–330

    Google Scholar 

  66. Hernández J, Herrero E, Solla-Gullón J, Vidal-Iglesias FJ, Feliu JM, Aldaz A (2006) Shape-dependent electrocatalysis: oxygen reduction on gold nanoparticles. In: Brisard GM, Adzic R, Birss V, Vieckowski A (eds) Proceedings – Electrochemical Society 2005–11 (Electrocatalysis). The Electrochemical Society, Pennington, NJ, pp 200–212

    Google Scholar 

  67. Hernández J, Solla-Gullón J, Herrero E, Aldaz A, Feliu JM (2005) Characterization of the surface structure of gold nanoparticles and nanorods using structure sensitive reactions. J Phys Chem B 109(26):12651–12654

    Article  Google Scholar 

  68. Hernández J, Solla-Gullón J, Herrero E, Aldaz A, Feliu JM (2006) Methanol oxidation on gold nanoparticles in alkaline media: unusual electrocatalytic activity. Electrochim Acta 52(4):1662–1669

    Article  Google Scholar 

  69. Hernández J, Solla-Gullón J, Herrero E, Aldaz A, Feliu JM (2007) Electrochemistry of shape-controlled catalysts: oxygen reduction reaction on cubic gold nanoparticles. J Phys Chem C 111(38):14078–14083

    Article  Google Scholar 

  70. Sanchez-Sanchez CM, Vidal-Iglesias FJ, Solla-Gullon J, Montiel V, Aldaz A, Feliu JM, Herrero E (2010) Scanning electrochemical microscopy for studying electrocatalysis on shape-controlled gold nanoparticles and nanorods. Electrochim Acta 55(27):8252–8257

    Article  Google Scholar 

  71. Walczak MM, Alves CA, Lamp BD, Porter MD (1995) Electrochemical and X-ray photoelectron spectroscopic evidence for differences in the binding sites of alkanethiolate monolayers chemisorbed at gold. J Electroanal Chem 396(1–2):103–114

    Google Scholar 

  72. Zhong CJ, Zak J, Porter MD (1997) Voltammetric reductive desorption characteristics of alkanethiolate monolayers at single crystal Au(111) and (110) electrode surfaces. J Electroanal Chem 421(1–2):9–13

    Google Scholar 

  73. El-Deab MS (2009) On the preferential crystallographic orientation of Au nanoparticles: effect of electrodeposition time. Electrochim Acta 54(14):3720–3725

    Article  Google Scholar 

  74. El-Deab MS, Sotomura T, Ohsaka T (2005) Size and crystallographic orientation controls of gold nanoparticles electrodeposited on GC electrodes. J Electrochem Soc 152(1):C1–C6

    Article  Google Scholar 

  75. El-Deab MS, Arihara K, Ohsaka T (2004) Fabrication of Au(111)-like polycrystalline gold electrodes and their applications to oxygen reduction. J Electrochem Soc 151(6):E213–E218

    Article  Google Scholar 

  76. El-Deab MS, Sotomura T, Ohsaka T (2005) Oxygen reduction at electrochemically deposited crystallographically oriented Au(1 0 0)-like gold nanoparticles. Electrochem Commun 7(1):29–34

    Article  Google Scholar 

  77. El-Deab MS, Sotomura T, Ohsaka T (2005) Morphological selection of gold nanoparticles electrodeposited on various substrates. J Electrochem Soc 152(11):C730–C737

    Article  Google Scholar 

  78. Gao F, El-Deab MS, Okajima T, Ohsaka T (2005) Electrochemical preparation of a Au crystal with peculiar morphology and unique growth orientation and its catalysis for oxygen reduction. J Electrochem Soc 152(6):A1226–A1232

    Article  Google Scholar 

  79. El-Deab MS, Sotomura T, Ohsaka T (2006) Oxygen reduction at Au nanoparticles electrodeposited on different carbon substrates. Electrochim Acta 52(4):1792–1798

    Article  Google Scholar 

  80. Gai PL, Harmer MA (2002) Surface atomic defect structures and growth of gold nanorods. Nano Lett 2(7):771–774

    Article  Google Scholar 

  81. Johnson CJ, Dujardin E, Davis SA, Murphy CJ, Mann S (2002) Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J Mater Chem 12(6):1765–1770

    Article  Google Scholar 

  82. Gao F, El-Deab MS, Ohsaka T (2005) Electrodeposition of gold nanorods with a uni-directional crystal growth and lower Au(111) facets area. Indian J Chem A 44(5):932–937

    Google Scholar 

  83. Zhou Z-Y, Tian N, Huang Z-Z, Chen D-J, Sun S-G (2009) Nanoparticle catalysts with high energy surfaces and enhanced activity synthesized by electrochemical method. Faraday Discuss 140:81–92

    Article  Google Scholar 

  84. Tian N, Zhou ZY, Sun SG (2008) Platinum metal catalysts of high-index surfaces: from single-crystal planes to electrochemically shape-controlled nanoparticles. J Phys Chem C 112(50):19801–19817

    Article  Google Scholar 

  85. Tian Y, Liu H, Zhao G, Tatsuma T (2006) Shape-controlled electrodeposition of gold nanostructures. J Phys Chem B 110(46):23478–23481

    Article  Google Scholar 

  86. Koblischka-Veneva A, Koblischka MR (2008) Analysis of twin boundaries using the electron backscatter diffraction (EBSD) technique. Mater Sci Eng B Solid State Mater Adv Technol 151(1):60–64

    Article  Google Scholar 

  87. Xu X, Jia J, Yang X, Dong S (2010) A templateless, surfactantless, simple electrochemical route to a dendritic gold nanostructure and its application to oxygen reduction. Langmuir 26(10):7627–7631

    Article  Google Scholar 

  88. Jena BK, Raj CR (2007) Synthesis of flower-like gold nanoparticles and their electrocatalytic activity towards the oxidation of methanol and the reduction of oxygen. Langmuir 23(7):4064–4070

    Article  Google Scholar 

  89. Jena BK, Raj CR (2007) Shape-controlled synthesis of gold nanoprism and nanoperiwinkles with pronounced electrocatalytic activity. J Phys Chem C 111(42):15146–15153

    Article  Google Scholar 

  90. Kuai L, Geng B, Wang S, Zhao Y, Luo Y, Jiang H (2011) Silver and gold icosahedra: one-pot water-based synthesis and their superior performance in the electrocatalysis for oxygen reduction reactions in alkaline media. Chemistry 17(12):3482–3489

    Article  Google Scholar 

  91. Seo B, Choi S, Kim J (2011) Simple electrochemical deposition of Au nanoplates from Au(I) cyanide complexes and their electrocatalytic activities. ACS Appl Mater Interfaces 3(2):441–446

    Article  Google Scholar 

  92. Das AK, Raj CR (2011) Rapid room temperature synthesis of electrocatalytically active Au nanostructures. J Colloid Interface Sci 353(2):506–511

    Article  Google Scholar 

  93. Plowman BJ, O’Mullane AP, Bhargava SK (2011) The active site behaviour of electrochemically synthesised gold nanomaterials. Faraday Discuss 152:43–62

    Article  Google Scholar 

  94. Shim JH, Kim J, Lee C, Lee Y (2010) Electrocatalytic activity of gold and gold nanoparticles Improved by electrochemical pretreatment. J Phys Chem C 115(1):305–309

    Article  Google Scholar 

  95. Chen D-J, Xu B, Sun S-G, Tong YJ (2012) Electroless deposition of ultrathin Au film for surface enhanced in situ spectroelectrochemistry and reaction-driven surface reconstruction for oxygen reduction reaction. Catal Today 182(1):46–53

    Article  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the MICINN (Spain) (project CTQ2010-16271) and Generalitat Valenciana (project PROMETEO/2009/045, FEDER).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Enrique Herrero or Juan M. Feliu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Vidal-Iglesias, F.J., Solla-Gullón, J., Herrero, E., Feliu, J.M. (2013). Au Electrocatalysis for Oxygen Reduction. In: Shao, M. (eds) Electrocatalysis in Fuel Cells. Lecture Notes in Energy, vol 9. Springer, London. https://doi.org/10.1007/978-1-4471-4911-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4911-8_16

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4910-1

  • Online ISBN: 978-1-4471-4911-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics