Advertisement

Non-Pt Cathode Electrocatalysts for Anion-Exchange-Membrane Fuel Cells

Chapter
Part of the Lecture Notes in Energy book series (LNEN, volume 9)

Abstract

This chapter provides an overview of the recent advancement in the development of non-Pt electrocatalysts for oxygen reduction reactions (ORRs) in alkaline media; catalyst materials discussed include carbon-supported transition metals (Pt/C, Pd/C, Ag/C), transition-metal macrocycles (M–N–C), and multifunctional materials (e.g., metallic alloys, metallic MnO2, macrocycle-treated metals). The important factors affecting ORR kinetics are identified through combined theoretical simulations and experimental measurements. The inconsistencies between the ORR activities observed in fuel cell tests and those observed in rotating disk electrodes, as reported by several research groups, were analyzed in details, and plausible theoretical explanations were proposed. Several promising bifunctional catalysts and their potentials as replacements for Pt in anion-exchange-membrane fuel cell (AEMFC) applications are discussed. For the AEMFC technology to mature as a low-cost high-performance energy device, further improvement of the performance and durability of the catalysts is essential; we believe that the necessary improvements can be achieved through intelligent design of multifunctional catalysts.

Keywords

Density Functional Theory Calculation Cell Voltage Rotate Disk Electrode Cathode Catalyst Peak Power Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cifrain M, Kordesch K (2003) Fundamentals and survey of systems. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells, vol 1. Wiley, Milan, pp 267–280Google Scholar
  2. 2.
    McLean GF, Niet T, Richard SP, Djilali N (2002) An assessment of alkaline fuel cell technology. Int J Hydrogen Energy 27:507–526CrossRefGoogle Scholar
  3. 3.
    Kinoshita K (1992) Electrochemical oxygen technology. Wiley, New YorkGoogle Scholar
  4. 4.
    Gamburzev S, Petrov K (2002) Silver-carbon electrocatalyst for air cathodes in alkaline fuel cells. J Appl Electrochem 32(7):805–809CrossRefGoogle Scholar
  5. 5.
    Schulze M, Gulzow E (2004) Degradation of nickel anodes in alkaline fuel cells. J Power Sources 127(1–2):252–263CrossRefGoogle Scholar
  6. 6.
    Wagner N, Shulze M, Gulzow E (2004) Long term investigation of silver cathodes for alkaline fuel cells. J Power Sources 127(1–2):264–272CrossRefGoogle Scholar
  7. 7.
    Choban ER, Spendelow JS, Gancs L, Wieckowski A, Kenis PJA (2005) Membraneless laminar flow-based micro fuel cells operating in alkaline, acidic, and acidic/alkaline media. Electrochim Acta 50(27):5390–5398CrossRefGoogle Scholar
  8. 8.
    Spendelow JS, Wieckowski A (2007) Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys Chem Chem Phys 9:2654–2675CrossRefGoogle Scholar
  9. 9.
    Varcoe JR, Slade RCT (2005) Prospects for alkaline anion-exchange membranes in low temperature. Fuel Cells 5:187–200CrossRefGoogle Scholar
  10. 10.
    Yu EH, Scott K (2005) Direct methanol alkaline fuel cells with catalysed anion exchange membrane electrodes. J Appl Electrochem 35:91–96CrossRefGoogle Scholar
  11. 11.
    Matsuoka K, Iriyama Y, Abe T, Matsuoka M, Ogumi Z (2005) Alkaline direct alcohol fuel cells using an anion exchange membrane. J Power Sources 150(4):27–31CrossRefGoogle Scholar
  12. 12.
    Varcoe JR, Slade RCT, Yee ELH (2006) An alkaline polymer electrochemical interface: a breakthrough in application of alkaline anion-exchange membranes in fuel cells. Chem Commun 13:1428–1429CrossRefGoogle Scholar
  13. 13.
    Yang CC, Chiu SJ, Chien WC (2006) Development of alkaline direct methanol fuel cells based on crosslinked PVA polymer membranes. J Power Sources 162(1):21–29CrossRefGoogle Scholar
  14. 14.
    Varcoe JR, Slade RCT (2006) An electron-beam-grafted ETFE alkaline anion-exchange membrane in metal-cation-free solid-state alkaline fuel cells. Electrochem Commun 8(5):839–843CrossRefGoogle Scholar
  15. 15.
    Lin BYS, Kirk DW, Thorpe SJ (2006) Performance of alkaline fuel cells: a possible future energy system. J Power Sources 161(1):474–483CrossRefGoogle Scholar
  16. 16.
    Tamain C, Poynton SD, Slade RCT, Carroll B, Varcoe JR (2007) Development of cathode architectures customized for H2/O2 metal-cation-free alkaline membrane fuel cells. J Phys Chem C 111(49):18423–18430CrossRefGoogle Scholar
  17. 17.
    Park JS, Park SH, Yim SD, Yoon YG, Lee WY, Kim CS (2008) Performance of solid alkaline fuel cells employing anion-exchange membranes. J Power Sources 178:620–626CrossRefGoogle Scholar
  18. 18.
    Unlu M, Zhou J, Kohl P (2009) Anion exchange membrane fuel cells: experimental comparison of hydroxide and carbonate conductive ions fuel cells and energy conversion. Electrochem Solid State Lett 12(3):B27–B30CrossRefGoogle Scholar
  19. 19.
    Gu S, Cai R, Luo T, Chen ZW, Sun MW, Liu Y, He GH, Yan YS (2009) A soluble and highly conductive ionomer for high-performance hydroxide exchange membrane fuel cells. Angew Chem Int Ed 48(35):6499–6502CrossRefGoogle Scholar
  20. 20.
    Switzer EE, Olson TS, Datye AK, Atanassov P, Hibbs MR, Fujimoto CY, Cornelius CJ (2010) Novel KOH-free anion-exchange membrane fuel cell: performance comparison of alternative anion-exchange ionomers in catalyst ink. Electrochim Acta 55(9):3404–3408CrossRefGoogle Scholar
  21. 21.
    Piana M, Boccia M, Filpi A, Flammia E, Miller HA, Orsini M, Salusti F, Santiccioli S, Ciardelli F, Pucci A (2010) H2/air alkaline membrane fuel cell performance and durability, using novel ionomer and non-platinum group metal cathode catalyst. J Power Sources 195(18):5875–5881CrossRefGoogle Scholar
  22. 22.
    Fukuta K, Inoue H, Chikashige Y, Yanagi H (2010) Improved maximum power density of alkaline fuel cells (AMFCs) by the optimization of mea construction. ECS Trans 28(30):221–225CrossRefGoogle Scholar
  23. 23.
    Sun L, Guo J, Zhou J, Xu Q, Chu D, Chen R (2012) Novel nanostructured high-performance anion exchange ionomers for anion exchange membrane fuel cells. J Power Sources 202:70–77CrossRefGoogle Scholar
  24. 24.
    Bidault F, Brett DJL, Middletonc PH, Brandon NP (2009) Review of gas diffusion cathodes for alkaline fuel cells. J Power Sources 187:39–48CrossRefGoogle Scholar
  25. 25.
    Jiang L, Hsu A, Chu D, Chen R (2010) Ethanol electro-oxidation on Pt/C and PtSn/C catalysts in alkaline and acid solutions. Int J Hydrogen Energy 35(1):365–372CrossRefGoogle Scholar
  26. 26.
    Antolini E, Gonzalez ER (2010) Alkaline direct alcohol fuel cells. J Power Sources 195(11):3431–3450CrossRefGoogle Scholar
  27. 27.
    Jagal JH (2006) N4-macrocyclic metal complexes, 1st edn. Springer, New York, pp 41–82Google Scholar
  28. 28.
    Adzic R (1998) Recent advances in the kinetics of oxygen reduction. In: Lipkowski J, Ross PN (eds) Elecrocatalysis, Frontier in science. Wiley, New York, pp 197–242Google Scholar
  29. 29.
    Lima FHB, Zhang J, Shao MH, Sasaki K, Vukmirovic MB, Ticianelli EA, Adzic R (2007) Catalytic activity-d-band center correlation for the O2 reduction reaction on platinum in alkaline solutions. J Phys Chem C 111:404–410CrossRefGoogle Scholar
  30. 30.
    Jiang L, Hsu A, Chu D, Chen R (2009) Oxygen reduction reaction on carbon supported pt and pd in alkaline solution. J Electrochem Soc 156(3):B370–B376CrossRefGoogle Scholar
  31. 31.
    Hurlen T, Sandler YL, Pantier EA (1966) Reactions of oxygen and hydrogen peroxide at silver electrodes in alkaline solutions. Electrochim Acta 11:1463–1473CrossRefGoogle Scholar
  32. 32.
    Lima FHB, Sanches CD, Ticianelli EA (2005) Physical characterization and electrochemical activity of bimetallic platinum-silver particles for oxygen reduction in alkaline electrolyte. J Electrochem Soc 152(7):A1466–A1473CrossRefGoogle Scholar
  33. 33.
    Demarconnay L, Coutanceau C, Leger JM (2004) Electroreduction of dioxygen (ORR) in alkaline medium on Ag/C and Pt/C nanostructured catalysts – effect of the presence of methanol. Electrochim Acta 49:4513–4521CrossRefGoogle Scholar
  34. 34.
    Coutanceau C, Demarconnay L, Lamy C, Leger JM (2006) Development of electrocatalysts for solid alkaline fuel cell (SAFC). J Power Sources 156(1):14–19CrossRefGoogle Scholar
  35. 35.
    Blizanac BB, Ross PN, Markovic NM (2006) Oxygen reduction on silver low-index single-crystal surfaces in alkaline solution: rotating ring disk Ag(hkl) studies. J Phys Chem B 110(10):4735–4741CrossRefGoogle Scholar
  36. 36.
    Han JJ, Li N, Zhang TY (2009) Ag/C nanoparticles as an cathode catalyst for a zinc-air battery with a flowing alkaline electrolyte. J Power Sources 193(2):885–889CrossRefGoogle Scholar
  37. 37.
    Guo J, Hsu A, Chu D, Chen R (2010) Improving oxygen reduction reaction activities on carbon-supported ag nanoparticles in alkaline solutions. J Phys Chem C 114(10):4324–4330CrossRefGoogle Scholar
  38. 38.
    Singh P, Buttry DA (2012) Comparison of oxygen reduction reaction at silver nanoparticles and polycrystalline silver electrodes in alkaline solution. J Phys Chem C 116(19):10656–10663CrossRefGoogle Scholar
  39. 39.
    Varcoe JR, Slade RCT, Wright GL, Chen Y (2006) Steady-state dc and impedance investigations of H2/O2 alkaline membrane fuel cells with commercial Pt/C, Ag/C, and Au/C cathodes. J Phys Chem B 110(42):21041–21049CrossRefGoogle Scholar
  40. 40.
    Poynton SD, Kizewski JP, Slade RCT, Varcoe JR (2010) Novel electrolyte membranes and non-Pt catalysts for low temperature fuel cells. Solid State Ionics 181(3–4):219–222CrossRefGoogle Scholar
  41. 41.
    Lu S, Pan J, Huang A, Zhuang L, Lu J (2008) Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Proc Natl Acad Sci USA 105(52):20611–20614CrossRefGoogle Scholar
  42. 42.
    Guo J, Zhou J, Chu D, Chen R (2013) Tuning the electrochemical interface of Ag/C electrodes in alkaline media with metallophthalocyanine molecules. J Phys Chem C. doi: 10.1021/jp310655y
  43. 43.
    Hansen H, Rossmeisl J, Nørskov JK (2008) Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Phys Chem Chem Phys 10:3722–3730CrossRefGoogle Scholar
  44. 44.
    Strmcnik D, Kodama K, Vliet DVD, Greeley J, Stamenkovic VR, Markovic NM (2009) The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nat Chem 1:466–472CrossRefGoogle Scholar
  45. 45.
    Strmcnik D, Vliet DFVD, Chang KC, Komanicky V, Kodama K, You H, Stamenkovic VR, Markovic NM (2011) Effects of Li+, K+, and Ba2+ cations on the ORR at model and high surface area Pt and Au surfaces in alkaline solutions. J Phys Chem Lett 2(21):2733–2736CrossRefGoogle Scholar
  46. 46.
    Lucas CA, Thompson P, Grunder Y, Markovic NM (2011) The structure of the electrochemical double layer: Ag(111) in alkaline electrolyte. Electrochem Commun 13(11):1205–1208CrossRefGoogle Scholar
  47. 47.
    Blizanac BB, Ross PN, Markovic NM (2006) Oxygen reduction on silver low-index single-crystal surfaces in alkaline solution: rotating ring disk Ag(hkl) studies. J Phys Chem B 110(10):4735–4741CrossRefGoogle Scholar
  48. 48.
    Guo J, Li H, He H, Chu D, Chen R (2011) CoPc- and CoPcF16-modified Ag nanoparticles as novel catalysts with tunable oxygen reduction activity in alkaline media. J Phys Chem C 115(17):8494–8502CrossRefGoogle Scholar
  49. 49.
    Jasinski R (1964) A new fuel cell cathode catalyst. Nature 201:1212–12113CrossRefGoogle Scholar
  50. 50.
    Alt H, Binder H, Sandstede G (1973) Mechanism of the electrocatalytic reduction of oxygen on metal chelates. J Catal 28(1):8–19CrossRefGoogle Scholar
  51. 51.
    Veen JARV, Baar JFV, Kroese CJ, Coolegem JGF, Wit NE, Colijn HA (1981) Oxygen reduction on transition-metal porphyrins in acid electrolyte I. Activity. Phys Chem 85:693–700CrossRefGoogle Scholar
  52. 52.
    Scherson DA, Gupta SL, Fierro C, Yeager E, Kordesch M, Eldridge J, Hoffman R (1983) Cobalt tetramethoxyphenyl porphyrin – emission Mossbauer spectroscopy and O2 reduction electrochemical studies. Electrochim Acta 28(9):1205–1209CrossRefGoogle Scholar
  53. 53.
    Zagal J, Bindra P, Yeager E (1980) A mechanistic study of O2 reduction on water soluble phthalocyanines adsorbed on graphite electrodes. J Electrochem Soc 127:1506–1517CrossRefGoogle Scholar
  54. 54.
    Scherson D, Tanaka AA, Gupta SL, Tryk D, Fierro C, Holze R, Yeager EB, Lattimer RP (1986) Transition metal macrocycles supported on high area carbon: pyrolysis – mass spectrometry studies. Electrochim Acta 31(10):1247–1258CrossRefGoogle Scholar
  55. 55.
    Zagal J, Sen R, Yeager E (1977) Oxygen reduction by Co(II) tetrasulfonatephthalocyanine irreversibly adsorbed on a stress-annealed pyrolytic graphite electrode surface. J Electroanal Chem 83(1):207–213CrossRefGoogle Scholar
  56. 56.
    Yeager E (1984) Electrocatalysts for O2 reduction. Electrochim Acta 29(11):1527–1537CrossRefGoogle Scholar
  57. 57.
    Putten AVD, Elzing A, Visscher W, Barendrecht E (1986) Oxygen reduction on vacuum-deposited and absorbed transition-metal phthalocyanine films. J Electroanal Chem 214(1–2):523–533Google Scholar
  58. 58.
    Collman JP, Marrocco M, Denisovich P, Koval C, Anson FC (1979) Potent catalysis of the electroreduction of oxygen to water by dicobalt porphyrin dimers adsorbed on graphite electrodes. J Electroanal Chem 101(1):117–122CrossRefGoogle Scholar
  59. 59.
    Collman J, Danisovich P, Yutaka K, Marrocco M, Koval C, Anson F (1980) Electrode catalysis of the four-electron reduction of oxygen to water by dicobalt face-to-face porphyrins. J Am Chem Soc 102(19):6027–6036CrossRefGoogle Scholar
  60. 60.
    Liu H, Weaver M, Wang C, Chang C (1983) Dependence of electrocatalysis for oxygen reduction by adsorbed dicobalt cofacial porphyrins upon catalyst structure. J Electroanal Chem 145(2):439–447CrossRefGoogle Scholar
  61. 61.
    Yeager E (1986) Dioxygen electrocatalysis: mechanisms in relation to catalyst structure. J Mol Catal 38(1–2):5–25Google Scholar
  62. 62.
    Gupta S, Tryk D, Bae I, Aldred W, Yeager E (1989) Heat-treated polycrylonitrile-based catalysts for oxygen electroreduction. J Appl Electrochem 19(1):19–27CrossRefGoogle Scholar
  63. 63.
    Tse Y, Janda P, Lam H, Zhang J, Pietro W, Lever ABP (1997) Monomeric and polymeric tetra-aminophthalocyanatocobalt(II) modified electrodes: electrocatalytic reduction of oxygen. J Porphyr Phthalocyanines 1(1):3–16CrossRefGoogle Scholar
  64. 64.
    Ramirez G, Trollund E, Isaacs M, Armijo F, Zagal J, Costamagna J, Aguirre M (2002) Electroreduction of molecular oxygen on poly-iron-tetraaminophthalocyanine modified electrodes. J Electroanal 14:540–545CrossRefGoogle Scholar
  65. 65.
    Jaouen F, Marcotte S, Dodelet JP, Lindbergh G (2003) Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysis of iron acetate adsorbed on various carbon supports. J Phys Chem B 107(6):1376–1386CrossRefGoogle Scholar
  66. 66.
    Lefevre M, Dodelet JP (2003) Fe-based catalysts for the reduction of oxygen in polymer electrolyte membrane fuel cell conditions: determination of the amount of peroxide released during electroreduction and its influence on the stability of the catalysts. Electrochim Acta 48(19):2749–2760CrossRefGoogle Scholar
  67. 67.
    Schulenburg H, Stankov S, Schnemann V, Radnik J, Dorbandt I, Fiechter S, Bogdanoff P, Tributsch H (2003) Catalysts for the oxygen reduction from heat-treated iron(III) tetramethoxyphenylporphyrin chloride: structure and stability of active sites. J Phys Chem B 107(34):9034–9041CrossRefGoogle Scholar
  68. 68.
    Villers D, Jacques-Bedard X, Dodelet JP (2004) Fe-based catalysts for oxygen reduction in PEM fuel cells: pretreatment of the carbon support. J Electrochem Soc 151(9):A1507–A1515CrossRefGoogle Scholar
  69. 69.
    Marcotte S, Villers D, Guillet N, Roue L, Dodelet JP (2004) Electroreduction of oxygen on Co-based catalysts: determination of the parameters affecting the two-electron transfer reaction in an acid medium. Electrochim Acta 50(1):179–188CrossRefGoogle Scholar
  70. 70.
    Barnanton S, Couranceau C, Roux C, Hahn F, Leger JM (2005) Oxygen reduction reaction in acid medium at iron phthalocyanine dispersed on high surface area carbon substrate: tolerance to methanol, stability and kinetics. J Electroanal Chem 577(2):223–234CrossRefGoogle Scholar
  71. 71.
    Lefevre M, Dodelet JP, Bertrand P (2005) Molecular oxygen reduction in PEM fuel cell conditions: ToF-SIMS analysis of co-based electrocatalysts. J Phys Chem B 109(35):16718–16724CrossRefGoogle Scholar
  72. 72.
    Jaouen F, Lefevre M, Dodelet JP, Cai M (2006) Heat-treated Fe/N/C catalysts for O2 electroreduction: are active sites hosted in micropores? J Phys Chem B 110(11):5553–5558CrossRefGoogle Scholar
  73. 73.
    Guillet N, Roue L, Marcotte S, Villers D, Dodelet JP, Chhim N, Trevin S (2006) Electrogeneration of hydrogen peroxide in acid medium using pyrolyzed cobalt-based catalysts: influence of the cobalt content on the electrode performance. J Appl Electrochem 36(8):863–870CrossRefGoogle Scholar
  74. 74.
    Baker R, Wilkinson D, Zhang J (2008) Electrocatalytic activity and stability of substituted iron phthalocyanines towards oxygen reduction evaluated at different temperatures. Electrochim Acta 53(23):6906–6919CrossRefGoogle Scholar
  75. 75.
    Jaouen F, Herranz J, Lefevre M, Dodelet JP, Kramm UI, Herrmann I, Bogdanoff P, Maruyama J, Nagaoka T, Garsuch A, Dahn JR, Olson T, Pylypenko S, Atanassov P, Ustinov EA (2009) Cross-laboratory experimental study of non-noble-metal electrocatalysts for the oxygen reduction reaction. ACS Appl Mater Interfaces 1(8):1623–1639CrossRefGoogle Scholar
  76. 76.
    Jaouen F, Dodelet JP (2009) O2 reduction mechanism on non-noble metal catalysts for pem fuel cells. Part I: Experimental rates of O2 electroreduction, H2O2 electroreduction, and H2O2 disproportionation. J Phys Chem C 113(34):15422–15432CrossRefGoogle Scholar
  77. 77.
    Lefevre M, Proietti E, Jaouen F, Dodelet JP (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324:71–74CrossRefGoogle Scholar
  78. 78.
    Gasteiger H, Markovic NM (2009) Just a dream-or future reality. Science 324:48–49CrossRefGoogle Scholar
  79. 79.
    Proietti E, Jaouen F, Lefèvre M, Larouche N, Tian J, Herranz J, Dodelet JP (2011) Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat Commun 2:416. doi: 10.1038/ncomms1427 CrossRefGoogle Scholar
  80. 80.
    Wu G, More KL, Johnston CM, Zelenay P (2011) High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332:443–447CrossRefGoogle Scholar
  81. 81.
    Herranz J, Jaouen F, Lefevre M, Kramm UI, Proietti E, Dodelet JP, Bogdanoff P, Fiechter S, Abs-Wurmbach I, Bertrand P, Arruda TM, Mukerjee S (2011) Unveiling N-protonation and anion-binding effects on Fe/N/C catalysts for O2 reduction in proton-exchange-membrane fuel cells. J Phys Chem C 115(32):16087–16097CrossRefGoogle Scholar
  82. 82.
    Olson TS, Pylypenko S, Atanassov P, Asazawa K, Yamada K, Tanaka H (2010) Anion-exchange membrane fuel cells: dual-site mechanism of oxygen reduction reaction in alkaline media on cobalt–polypyrrole electrocatalysts. J Phys Chem C 114(11):5049–5059CrossRefGoogle Scholar
  83. 83.
    Jahnke H, Schonborn M, Zimmermann G (1976) Organic dyestuffs as catalysts for fuel cells. Top Curr Chem 61:133–181CrossRefGoogle Scholar
  84. 84.
    Zagal J, Sen R, Yeager E (1977) Oxygen reduction by Co(II) tetrasulfonatephthalocyanine irreversibly adsorbed on a stress-annealed pyrolytic graphite electrode surface. J Electroanal Chem 83(1):207–213CrossRefGoogle Scholar
  85. 85.
    Yeager E (1984) Electrocatalysts for O2 reduction. Electrochim Acta 29(11):1527–1537CrossRefGoogle Scholar
  86. 86.
    Putten AVD, Elzing A, Visscher W, Barendrecht E (1986) Oxygen reduction on vacuum-deposited and absorbed transition-metal phthalocyanine films. J Electroanal Chem 214(1–2):523–533Google Scholar
  87. 87.
    Vasudevan P, Mann SN, Tyagi S (1990) Transition metal complexes of porphyrins and phthalocyanines as electrocatalysts for dioxygen reduction. Transit Met Chem 15(2):81–90CrossRefGoogle Scholar
  88. 88.
    Zagal JH (1992) Metallophthalocyanines as catalysts in electrochemical reactions. Coord Chem Rev 119:89–136CrossRefGoogle Scholar
  89. 89.
    Kazarinov VE, Tarasevich MR, Radyushkina KA, Andreev VN (1979) Some specific features of the metalloporphyrin/electrolyte interface and the kinetics of oxygen electroreduction. J Electroanal Chem 100(1–2):225–232CrossRefGoogle Scholar
  90. 90.
    Shukla A, Manoharan R, Paliteiro C, Hamnett A, Goodenough J (1984) High efficiency cathodes for alkaline air electrodes. J Appl Electrochem 15(5):774–777CrossRefGoogle Scholar
  91. 91.
    Zagal J, Paez M, Tanaka A, Santos J, Linkous C (1992) Electrocatalytic activity of metal phthalocyanines for oxygen reduction. J Electroanal Chem 339(1–2):13–30Google Scholar
  92. 92.
    Guo J, He H, Chu D, Chen R (2012) OH -Binding effects on metallophthalocyanine catalysts for O2 reduction reaction in anion exchange membrane fuel cells. Electrocatalysis. 3:252–264Google Scholar
  93. 93.
    Chen R, Li H, Chu D, Wang G (2009) Unraveling oxygen reduction reaction mechanisms on carbon-supported Fe-phthalocyanine and Co-phthalocyanine catalysts in alkaline solutions. J Phys Chem C 113(48):20689–20697CrossRefGoogle Scholar
  94. 94.
    Gouerec P, Biloul A, Contamin O, Scarbeck G, Savy M, Riga J, Weng LT, Bertrand P (1997) Oxygen reduction in acid media catalyzed by heat treated cobalt tetraazaannulene supported on an active charcoal: correlations between the performances after longevity tests and the active site configuration as seen by XPS and ToF-SIMS. J Electroanal Chem 422(1–2):61–75Google Scholar
  95. 95.
    Ahmed J, Yuan Y, Zhou L, Kim S (2012) Carbon supported cobalt oxide nanoparticles–iron phthalocyanine as alternative cathode catalyst for oxygen reduction in microbial fuel cells. J Power Sources 208:170–175CrossRefGoogle Scholar
  96. 96.
    Mamlouk M, Wang X, Scott K, Horsfall J, Williams C (2011) Characterization and application of anion exchange polymer membranes with non-platinum group metals for fuel cells. Proc Inst Mech Eng A J Power Energy 225(2):152–160CrossRefGoogle Scholar
  97. 97.
    Mamlouk M, Kumar SM, Gouerec P, Scott K (2011) Electrochemical and fuel cell evaluation of Co based catalyst for oxygen reduction in anion exchange polymer membrane fuel cells. J Power Sources 196:7594–7600CrossRefGoogle Scholar
  98. 98.
    Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108(46):17886–17892CrossRefGoogle Scholar
  99. 99.
    Nilekar AU, Mavrikakis M (2008) Improved oxygen reduction reactivity of platinum monolayers on transition metal surfaces. Surf Sci 602(14):L89–L94CrossRefGoogle Scholar
  100. 100.
    Roques J, Anderson AB (2004) Electrode potential-dependent stages in OHads formation on the Pt3Cr alloy (111) surface. J Electrochem Soc 151(11):E340–E347CrossRefGoogle Scholar
  101. 101.
    Liao M, Scheiner S (2002) Comparative study of metal-porphyrins, -porphyrazines, and -phthalocyanines. J Comput Chem 23(15):1391–1403CrossRefGoogle Scholar
  102. 102.
    Liao M, Scheiner S (2001) Electronic structure and bonding in metal phthalocyanines, metal=Fe, Co, Ni, Cu, Zn, Mg. J Chem Phys 114(22):9780–9791CrossRefGoogle Scholar
  103. 103.
    Shi Z, Zhang J (2007) Density functional theory study of transitional metal macrocyclic complexes’ dioxygen-binding abilities and their catalytic activities toward oxygen reduction reaction. J Phys Chem C 111(19):7084–7090CrossRefGoogle Scholar
  104. 104.
    Wang G, Ramesh N, Hsu A, Chu D, Chen R (2008) Density functional theory study of the adsorption of oxygen molecule on iron phthalocyanine and cobalt phthalocyanine. Mol Simulat 34:1051–1056CrossRefGoogle Scholar
  105. 105.
    He H, Lei Y, Xiao C, Chu D, Chen R, Wang G (2012) Molecular and electronic structures of transition-metal macrocyclic complexes as related to catalyzing oxygen reduction reactions: a density functional theory study. J Phys Chem C 116(30):16038–16046CrossRefGoogle Scholar
  106. 106.
    Miedema PS, Schooneveld M, Bogerd R, Rocha T, Havecker M, Gericke A, Groot F (2011) Oxygen binding to cobalt and iron phthalocyanines as determined from in situ X-ray absorption spectroscopy. J Phys Chem C 115(51):25422–25428CrossRefGoogle Scholar
  107. 107.
    Tanaka A, Fierro C, Scherson D, Yeager E (1987) Electrocatalytic aspects of iron phthalocyanine and its μ-oxo derivatives dispersed on high surface area carbon. J Phys Chem 91(14):3799–3807CrossRefGoogle Scholar
  108. 108.
    Jiang L, Hsu A, Chu D, Chen R (2010) A highly active Pd coated Ag electrocatalyst for oxygen reduction reactions in alkaline media. Electrochim Acta 55(15):4506–4511CrossRefGoogle Scholar
  109. 109.
    Sun W, Hsu A, Chen R (2011) Palladium-coated manganese dioxide catalysts for oxygen reduction reaction in alkaline media. J Power Sources 196:4491–4498CrossRefGoogle Scholar
  110. 110.
    Slanac DA, Lie A, Paulson JA, Stevenson KJ, Johnston KP (2012) Bifunctional catalysts for alkaline oxygen reduction reaction via promotion of ligand and ensemble effects at Ag/MnOx nanodomains. J Phys Chem C 116(20):11032–11039CrossRefGoogle Scholar
  111. 111.
    Slanac DA, Hardin WG, Johnston KP, Stevenson KJ (2012) Atomic ensemble and electronic effects in Ag-rich AgPd nanoalloy catalysts for oxygen reduction in alkaline media. J Am Chem Soc 134(23):9812–9819CrossRefGoogle Scholar
  112. 112.
    Lima FHB, Castro JFR, Ticianelli E (2006) Silver-cobalt bimetallic particles for oxygen reduction in alkaline media. J Power Sources 161(2):806–812CrossRefGoogle Scholar
  113. 113.
    Lima FHB, Calegaro ML, Ticianelli EA (2007) Electrocatalytic Activity of Dispersed Platinum and Silver Alloys and Manganese Oxides for the Oxygen Reduction in Alkaline Electrolyte. Russian Journal of Electrochemistry 42:1283–1290.CrossRefGoogle Scholar
  114. 114.
    Gasteiger HA, Kocha S, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal Environ 56(1–2):9–35CrossRefGoogle Scholar
  115. 115.
    Stamenkovic VR, Fowler B, Mun BS, Wang GF, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497CrossRefGoogle Scholar
  116. 116.
    Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang GF, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6:241–247CrossRefGoogle Scholar
  117. 117.
    Zhang J, Mo Y, Vukimirovic MB, Klie R, Sasaki K, Adzic RR (2004) Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J Phys Chem B 108(20):10955–10964CrossRefGoogle Scholar
  118. 118.
    Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeis J, Chorkendorff I, Nørskov JK (2009) Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem 1:552–556CrossRefGoogle Scholar
  119. 119.
    Wang C, Wang G, Vliet D, Chang K, Markovica NM, Stamenkovic VR (2010) Monodisperse Pt3Co nanoparticles as electrocatalyst: the effects of particle size and pretreatment on electrocatalytic reduction of oxygen. Phys Chem Chem Phys 12:6933–6939CrossRefGoogle Scholar
  120. 120.
    Wang C, Chi M, Wang G, Vliet D, Li D, More K, Wang H, Schlueter JA, Markovic NM, Stamenkovic VR (2011) Nanoparticles: correlation between surface chemistry and electrocatalytic properties of monodisperse PtxNi1-x nanoparticles. Adv Funct Mater 21:147–152CrossRefGoogle Scholar
  121. 121.
    Barth JV (2007) Molecular architectonic on metal surface. Annu Rev Phys Chem 58:375–407CrossRefGoogle Scholar
  122. 122.
    Lin N, Stepanow S, Ruben M, Barth JV (2009) Surface-confined supramolecular coordination chemistry. Top Curr Chem 287:1–44CrossRefGoogle Scholar
  123. 123.
    Bai Y, Buchner F, Kellner I, Schmid M, Vollnhals F, Steinruck H, Marbach H, Gottfried JM (2009) Adsorption of cobalt (II) octaethylporphyrin and 2H-octaethylporphyrin on Ag(111): new insight into the surface coordinative bond. New J Phys 11:125004CrossRefGoogle Scholar
  124. 124.
    Auwarter W, Seufert K, Klappenberger F, Reichert J, Weber-Bargioni A, Verdini A, Cvetko D, Dell’Angela M, Floreano L, Cossaro A, Bavdek G, Morgante A, Seitsonen AP, Barth JV (2010) Site-specific electronic and geometric interface structure of Co-tetraphenyl-porphyrin layers on Ag(111). Phys Rev B 81:245403CrossRefGoogle Scholar
  125. 125.
    Baran JD, Larsson J, Woolley R, Cong Y, Moriarty P, Cafolla A, Schulte K, Dhanak V (2010) Theoretical and experimental comparison of SnPc, PbPc, and CoPc adsorption on Ag(111). Phys Rev B 81:075413CrossRefGoogle Scholar
  126. 126.
    Chu D, Jiang R (2002) Novel electrocatalysts for direct methanol fuel cells. Solid State Ionics 148:591–599CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Indiana University Purdue University IndianapolisIndianapolisUSA
  2. 2.Charles W. Davidson College of EngineeringSan José State UniversitySan JoséUSA

Personalised recommendations