Skip to main content

Metal Oxide-Based Compounds as Electrocatalysts for Oxygen Reduction Reaction

  • Chapter
  • First Online:
Electrocatalysis in Fuel Cells

Part of the book series: Lecture Notes in Energy ((LNEN,volume 9))

Abstract

The cathode catalysts for polymer electrolyte fuel cells should have high stability as well as excellent catalytic activity for oxygen reduction reaction (ORR). Group 4 and 5 metal oxide-based compounds have been evaluated as a cathode from the viewpoint of their high catalytic activity and high stability. Although group 4 and 5 metal oxides have high stability even in acidic and oxidative atmosphere, they are almost insulator and have poor ORR activity because they have large bandgaps. It is necessary to modify the surface of the oxides to improve the ORR activity. We have tried the surface modification methods of oxides into four methods: (1) formation of complex oxide layer containing active sites, (2) substitutional doping of nitrogen, (3) creation of oxygen defects without using carbon and nitrogen, and (4) partial oxidation of compounds which include carbon and nitrogen. These modifications were effective to improve the ORR activity of the oxides. The solubility of the oxide-based catalysts in 0.1 M H2SO4 at 30 °C under atmospheric condition was mostly smaller than that of platinum black, indicating that the oxide-based catalysts had sufficient stability compared to the platinum. The onset potential of various oxide-based cathodes for the ORR in 0.1 M H2SO4 at 30 °C achieved over 0.97 V vs. a reversible hydrogen electrode. This high onset potential suggests that the quality of the active sites of the oxide-based catalysts is mostly equivalent to that of platinum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ishihara A, Mitsushima S, Kamiya N, Ota K (2004) Exergy analysis of polymer electrolyte fuel cell systems using methanol. J Power Sources 126:34–40

    Article  Google Scholar 

  2. Bernardi DM, Verbrugge MW (1992) A mathematical model of the solid-polymer-electrolyte fuel cell. J Electrochem Soc 139:2477–2491

    Article  Google Scholar 

  3. Metal Economics Research Institute (2005) Japan, Report on trends for the supply and demand of platinum group metals for fuel cell systems. p 38 and 351 (in Japanese)

    Google Scholar 

  4. Japan Automobile Manufacturers Association, INC. (2005) The Motor Industry of Japan: 42

    Google Scholar 

  5. Jasinski R (1964) A New fuel cell cathode catalyst. Nature (London) 201:1212–1213

    Article  Google Scholar 

  6. Jahnke H, Schönborn M (1969) Zur Kathodischen reduktion von Sauerstoff an Phthalocyanin-Kohle-Katalysatoren, Comptes Rendus. Troisièmes Journées Internationales d’Etude des Piles à Combustible. Presses Académiques Européennes, Bruxelles, pp 60–65

    Google Scholar 

  7. Bezerra CWB, Zhang L, Lee K, Liu H, Marques ALB, Marques EP, Wang H, Zhang J (2008) A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction. Electrochim Acta 53:4937–4951

    Article  Google Scholar 

  8. Zagal JH (2003) Chap. 37 Macrocycles, In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells – fundamentals technology and applications, vol 2. Wiley, West Sussex, pp 545–554

    Google Scholar 

  9. Bashyam R, Zelenay P (2006) A class of non-precious metal composite catalysts for fuel cells. Nature (London) 443:63–66

    Article  Google Scholar 

  10. Lefevre M, Proietti E, Jaouen F, Dodelet JP (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324(5923):71–74

    Article  Google Scholar 

  11. Alonso Vante N, Tributsch H (1986) Energy conversion catalysis using semiconducting transition metal cluster compounds. Nature (London) 323(2):431–432

    Article  Google Scholar 

  12. Lewera A, Inukai J, Zhou WP, Cao D, Duong HT, Alonso-Vante N, Wieckowski A (2007) Chalcogenide oxygen reduction reaction catalysis: X-ray photoelectron spectroscopy with Ru, Ru/Se and Ru/S samples emersed from aqueous media. Electrochim Acta 52(18):5759–5765

    Article  Google Scholar 

  13. Alonso-Vante N (2003) Chap. 36 Chevrel phases and chalcogenides, In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells – fundamentals, technology and applications, vol 2. Wiley, West Sussex, pp 534–543

    Google Scholar 

  14. Aromaa J, Ronkainen H, Mahiout A, Hannula SP (1999) Identification of factors affecting the aqueous corrosion properties of (Ti, Al) N-coated steel. Surf Coating Technol 49:353–358

    Article  Google Scholar 

  15. Chou WJ, Yu GP, Huang JH (2003) Corrosion resistance of ZrN films on AISI 304 stainless steel substrate. Surf Coating Technol 167:59–67

    Article  Google Scholar 

  16. Souto RM, Alanyali H (2000) Electrochemical characteristics of steel coated with TiN and TiAlN coatings. Corros Sci 42:2201–2211

    Article  Google Scholar 

  17. Surviliene S, Bellozor S, Kurtinaitiene M, Safonov VA (2004) Protective properties of the chromium–titanium carbonitride composite coatings. Surf Coating Technol 176:193–201

    Article  Google Scholar 

  18. Tawfik H, Hung Y, Mahajan D (2007) Metal bipolar plates for PEM fuel cell – a review. J Power Sources 163:755–767

    Article  Google Scholar 

  19. Yang R, Bonakdarpour A, Bradley Easton E, Stoffyn-Egli P, Dahn JR (2007) Co–C–N oxygen reduction catalysts prepared by combinatorial magnetron sputter deposition. J Electrochem Soc 154:A275–A282

    Article  Google Scholar 

  20. Kim JH, Ishihara A, Mitsushima S, Kamiya N, Ota K (2007) Oxygen reduction reaction of Ta-C-N prepared by reactive sputtering with heat treatment. Electrochemistry 75(2):166–168

    Article  Google Scholar 

  21. Zhong H, Zhang H, Liu G, Liang Y, Hu J, Yi B (2006) A novel non-noble electrocatalyst for PEM fuel cell based on molybdenum nitride. Electrochem Commun 8:707–712

    Article  Google Scholar 

  22. Azuma M, Nakato Y, Tsubomura H (1987) Efficient and stable oxygen evolution of zirconium nitride thin film electrodes prepared by the reactive RF sputtering technique. J Electroanal Chem 220:369–372

    Article  Google Scholar 

  23. Azuma M, Nakato Y, Tsubomura H (1988) Oxygen and chlorine evolution on niobium-, zirconium- and other metal-nitride amorphous thin film electrodes prepared by the reactive RF sputtering technique. J Electroanal Chem 255:179–198

    Article  Google Scholar 

  24. Azuma M, Kashihara M, Nakato Y, Tsubomura H (1988) Reduction of oxygen to water on cobalt-nitride thin film electrodes prepared by the reactive RF sputtering technique. J Electroanal Chem 250:73–82

    Article  Google Scholar 

  25. Deng CZ, Dignam MJ (1998) Sputtered cobalt-carbon-nitrogen thin films as oxygen reduction electrocatalysts. J Electrochem Soc 145:3507–3512

    Article  Google Scholar 

  26. Deng CZ, Dignam MJ (1998) Sputtered cobalt-carbon-nitrogen thin films as oxygen reduction electrocatalysts. J Electrochem Soc 145:3513–3520

    Article  Google Scholar 

  27. Easton EB, Bonakdarpour A, Yang R, Stevens DA, Dahn JR (2008) Magnetron sputtered Fe–C–N, Fe–C, and C–N based oxygen reduction electrocatalysts. J Electrochem Soc 155:B547–B577

    Article  Google Scholar 

  28. Yang R, Stevens K, Dahn JR (2008) Investigation of activity of sputtered transition-metal (TM)–C–N (TM = V, Cr, Mn, Co, Ni) catalysts for oxygen reduction reaction. J Electrochem Soc 155:B79–B91

    Article  Google Scholar 

  29. Bonakdarpour A, Lefevre M, Yang R, Jaouen F, Dahn T, Dodelet JP, Dahn JR (2008) Impact of loading in RRDE experiments on Fe–N–C catalysts: two- or four-electron oxygen reduction? Electrochem Solid State Lett 11:B105–B108

    Article  Google Scholar 

  30. Kim JH, Ishihara A, Mitsushima S, Kamiya N, Ota K (2007) Oxygen reduction reaction of Cr-C-N prepared using reactive sputtering with heat treatment. Chem Lett 36(4):514–515

    Article  Google Scholar 

  31. Xia D, Liu S, Wang Z, Chena G, Zhang L, Zhang L, (Rob) Hui S, Zhang J (2008) Methanol-tolerant MoN electrocatalyst synthesized through heat treatment of molybdenum tetraphenylporphyrin for four-electron oxygen reduction reaction. J Power Sources 177:296–302

    Article  Google Scholar 

  32. Isogai S, Ohnishi R, Katayama M, Kubota J, Kim DY, Noda S, Cha D, Takanabe K, Domen K (2012) Composite of TiN nanoparticles and few-walled carbon nanotubes and its application to the electrocatalytic oxygen reduction reaction. Chem Asian J 7:286–289

    Article  Google Scholar 

  33. Barin I, Knacke O, Kubaschewski O (1977) Thermochemical properties of inorganic substances: supplement. Springer, Berlin

    Google Scholar 

  34. Wiame H, Centeno MA, Picard S, Bastians P, Grange P (1998) Thermal oxidation under oxygen of zirconium nitride studied by XPS, DRIFTS, TG-MS. J Eur Ceram Soc 18:1293–1299

    Article  Google Scholar 

  35. Shimada S (2001) Interfacial reaction on oxidation of carbides with formation of carbon. Solid State Ionics 141–142:99–104

    Article  Google Scholar 

  36. Shimada S, Johnsson M, Urbonaite S (2004) Thermoanalytical study on oxidation of TaC1−x N x powders by simultaneous TG-DTA-MS technique. Thermochim Acta 419:143–148

    Article  Google Scholar 

  37. Tada T (2003) Chap. 38 High dispersion catalysts including novel carbon supports, In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells: fundamentals, technology, and applications, vol 3. Wiley, New York, p 481

    Google Scholar 

  38. Ioroi T, Senoh H, Samazaki S, Siroma Z, Fujiwara N, Yasuda K (2008) Stability of corrosion-resistant magnéli-phase Ti4O7-supported PEMFC catalysts at high potentials. J Electrochem Soc 155:B321–B326

    Article  Google Scholar 

  39. Chhina H, Campbell S, Kesler O (2006) An oxidation-resistant indium tin oxide catalyst support for proton exchange membrane fuel cells. J Power Sources 161:893–900

    Article  Google Scholar 

  40. Baturina OA, Garsany Y, Zega T, Stroud R, Schull E, Swider-Lyonsa KE (2008) Oxygen reduction reaction on platinum/tantalum oxide electrocatalysts for PEM fuel cells. J Electrochem Soc 155:B1314–B1321

    Article  Google Scholar 

  41. Chhina H, Campbell S, Keslerc O (2007) Ex situ evaluation of tungsten oxide as a catalyst support for PEMFCs. J Electrochem Soc 154:B533–B539

    Article  Google Scholar 

  42. Sudan Saha M, Li R, Cai M, Suna X (2007) High electrocatalytic activity of platinum nanoparticles on SnO2 nanowire-based electrodes. Electrochem Solid State Lett 10:B130–B133

    Article  Google Scholar 

  43. Seger B, Kongkanand A, Vinodgopal K, Kamat PV (2008) Platinum dispersed on silica nanoparticle as electrocatalyst for PEM fuel cell. J Electroanal Chem 621:198–204

    Article  Google Scholar 

  44. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions (trans: Franklin JA). National Association of Corrosion Engineers, Houston, TX

    Google Scholar 

  45. Schmickler W, Schultze JW (1986) Electron Transfer Reactions on Oxide-Covered Metal Electrodes, In: Bockris JO’M, Conway BE, White RE (eds) Modern aspects of electrochemistry, vol 17. Plenum, New York, p 357

    Google Scholar 

  46. Sato N (1998) Electrochemistry at metal and semiconductor electrodes. Elsevier, Amsterdam, Chap. 8

    Google Scholar 

  47. Chun WJ, Ishikawa A, Fujisawa H, Takata T, Kondo JN, Hara M, Kawai M, Matsumoto Y, Domen K (2003) Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods. J Phys Chem B 107(8):1798–1803

    Article  Google Scholar 

  48. Ishihara A, Doi S, Liu Y, Mitsushima S, Kamiya N, Ota K (2007) Development of zirconium based non-platinum cathode. Mater Sci Forum 539–543:1379–1384

    Article  Google Scholar 

  49. Doi S, Ishihara A, Mitsushima S, Kamiya N, Ota K (2007) Zirconium based compounds for new cathode of polymer electrolyte fuel cell. J Electrochem Soc 154(3):B362–B369

    Article  Google Scholar 

  50. Kim JH, Ishihara A, Mitsushima S, Kamiya N, Ota K (2007) Catalytic activity of titanium oxide for oxygen reduction reaction as a non-platinum catalyst for PEFC. Electrochim Acta 52(7):2492–2497

    Article  Google Scholar 

  51. Mitsushima S, Koizumi Y, Uzuka S, Ota K (2008) Dissolution of platinum in acidic media. Electrochim Acta 54:455–460

    Article  Google Scholar 

  52. Houston JE, Laramore GE, Park RL (1974) Surface electronic properties of tungsten, tungsten carbide, and platinum. Science 185:258–260

    Article  Google Scholar 

  53. Levy RB, Boudart M (1973) Platinum-like behavior of tungsten carbide in surface catalysis. Science 181:547–549

    Article  Google Scholar 

  54. Binder H, Köhling A, Kuhn W, Lindner W, Sandstede G (1969) Tungsten carbide electrodes for fuel cells with acid electrolyte. Nature 224:1299–1300

    Article  Google Scholar 

  55. Kawamura G, Okamoto H, Ishikawa A, Kudo T (1987) Tungsten molybdenum carbide for electrocatalytic oxidation of methanol. J Electrochem Soc 134:1653–1658

    Article  Google Scholar 

  56. Izhar S, Yoshida M, Nagai M (2009) Characterization and performances of cobalt–tungsten and molybdenum–tungsten carbides as anode catalyst for PEFC. Electrochim Acta 54:1255–1262

    Article  Google Scholar 

  57. Yoneyama H, Kaneda M, Tamura H (1973) Electrochemical properties of tungsten carbide in aqueous solutions. Denki Kagaku 41:719–723

    Google Scholar 

  58. Bianchi VG, Mazza F, Trasatti S (1964) Anodisches Verhalten und Passivitat einiger interstitieller Verbindungen von Niobium, Tantal, Titan und Wolfram. Z Phys Chem 226:40–58

    Google Scholar 

  59. Armstrong RD, Douglas AF (1972) The anodic oxidation of the binary compounds of the transition elements in sulphuric acid. J Appl Electrochem 2:143–149

    Article  Google Scholar 

  60. Cowling RD, Hintermann HE (1970) The corrosion of titanium carbide. J Electrochem Soc 117:1447–1449

    Article  Google Scholar 

  61. Mazza F, Trasatti S (1963) Tungsten, titanium, and tantalum carbides and titanium nitrides as electrodes in redox systems. J Electrochem Soc 110:847–849

    Article  Google Scholar 

  62. Voïnov M, Bühler D, Tannenberger H (1971) Oxygen reduction on tungsten carbide. J Electrochem Soc 118:1137–1138

    Article  Google Scholar 

  63. Zhu Q, Zhou S, Wang X, Dai S (2009) Controlled synthesis of mesoporous carbon modified by tungsten carbides as an improved electrocatalyst support for the oxygen reduction reaction. J Power Sources 193:495–500

    Article  Google Scholar 

  64. Nie M, Shen PK, Wu M, Wei Z, Meng H (2006) A study of oxygen reduction on improved Pt-WC/C electrocatalysts. J Power Sources 162:173–176

    Article  Google Scholar 

  65. Lee K, Ishihara A, Mitsushima S, Kamiya N, Ota K (2004) Stability and electrocatalytic activity for oxygen reduction in WC+Ta catalyst. Electrochim Acta 49(21):3479–3485

    Article  Google Scholar 

  66. Ota K, Ishihara A, Mitsushima S, Lee K, Suzuki Y, Horibe N, Nakagawa T, Kamiya N (2005) Improvement of cathode materials for polymer electrolyte fuel cell. J New Mater Electrochem Syst 8:25–35

    Google Scholar 

  67. Bhattarai J, Akiyama E, Habazaki H, Kawashima A, Asami K, Hashimoto K (1998) The passivation behavior of sputter-deposited W-Ta alloys in 12M HCl. Corros Sci 40:757–779

    Article  Google Scholar 

  68. McIntyre DR, Vossen A, Wilde JR, Burstein GT (2002) Electrocatalytic properties of a nickel–tantalum–carbon alloy in an acidic electrolyte. J Power Sources 108:1–7

    Article  Google Scholar 

  69. Yang R, Bonakdarpour A, Dahn JR (2007) Investigation of sputtered Ta-Ni-C as an electrocatalyst for the oxygen reduction reaction. J Electrochem Soc 154:B1–B7

    Article  Google Scholar 

  70. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Article  Google Scholar 

  71. Fang CM, Orhan E, de Wijs GA, Hintzen HT, de Groot RA, Marchand R, Saillard JY, de With G (2001) The electronic structure of tantalum (oxy)nitrides TaON and Ta3N5. J Mater Chem 11:1248–1252

    Article  Google Scholar 

  72. Ishihara A, Lee K, Doi S, Mitsushima S, Kamiya N, Hara M, Domen K, Fukuda K, Ota K (2005) Tantalum oxynitride for a novel cathode of PEFC. Electrochem Solid State Lett 8(4):A201–A203

    Article  Google Scholar 

  73. Hara M, Hitoki G, Takata T, Kondo JN, Kobayashi H, Domen K (2003) TaON and Ta3N5 as new visible light driven photocatalysts. Catal Today 78:555–560

    Article  Google Scholar 

  74. Takagaki A, Takahashi Y, Yin F, Takanabe K, Kubota J, Domen K (2009) Highly dispersed niobium catalyst on carbon black by polymerized complex method as PEFC cathode catalyst. J Electrochem Soc 156:B811–B815

    Article  Google Scholar 

  75. Chen J, Takanabe K, Ohnishi R, Li D, Okada S, Hatasawa H, Morioka H, Antonietti M, Kubota J, Domen K (2010) Nano-sized TiN on carbon black as an efficient electrocatalyst for the oxygen reduction reaction prepared using an mpg-C3N4 template. Chem Commun 46:7492–7494

    Article  Google Scholar 

  76. Yin F, Takanabe K, Kubota J, Domen K (2010) Polymerized complex synthesis of niobium and zirconium based electrocatalysts for PEFC cathodes. J Electrochem Soc 157:B240–B244

    Article  Google Scholar 

  77. Ohnishi R, Katayama M, Takanabe K, Kubota J, Domen K (2010) Niobium-based catalysts prepared by reactive radio-frequency magnetron sputtering and arc plasma methods as non-noble metal cathode catalysts for polymer electrolyte fuel cells. Electrochim Acta 55:5393–5400

    Article  Google Scholar 

  78. Maekawa Y, Ishihara A, Mitsushima S, Ota K (2008) Catalytic activity of zirconium oxynitride prepared by reactive sputtering for ORR in sulfuric acid. Electrochem Solid State Lett 11(7):B109–B112

    Article  Google Scholar 

  79. Ishihara A, Doi S, Mitsushima S, Ota K (2008) Tantalum (oxy)nitrides prepared using reactive sputtering for new cathodes of polymer electrolyte fuel cell. Electrochim Acta 53(16):5442–5450

    Article  Google Scholar 

  80. Kikuchi A, Ishihara A, Matsuzawa K, Mitsushima S, Ota K (2009) Tantalum-based compounds prepared by reactive sputtering as a new non-platinum cathode for PEFC. Chem Lett 38(12):1184–1185

    Article  Google Scholar 

  81. Liu G, Zhang HM, Wang MR, Zhong HX, Chen J (2007) Preparation, characterization of ZrO x N y /C and its application in PEMFC as an electrocatalyst for oxygen reduction. J Power Sources 172:503–510

    Article  Google Scholar 

  82. Chisaka M, Suzuki Y, Iijima T, Sakurai Y (2011) Effect of synthesis route on oxygen reduction reaction activity of carbon-supported hafnium oxynitride in acid media. J Phys Chem C 115:20610

    Article  Google Scholar 

  83. Pan JM, Maschhoff BL, Diebold U, Madey TE (1992) Interaction of water, oxygen, and hydrogen with TiO2(110) surfaces having different defect densities. J Vac Sci Technol A 10:2470–2476

    Article  Google Scholar 

  84. Lisebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  Google Scholar 

  85. Descorme C, Madier Y, Duprez D (2000) Infrared study of oxygen adsorption and activation on cerium–zirconium mixed oxides. J Catal 196:167–173

    Article  Google Scholar 

  86. Blaisdell JM, Kunz AB (1984) Theoretical study of O chemisorption on NiO. Perfect surfaces and cation vacancies. Phys Rev B 29:988–995

    Article  Google Scholar 

  87. Göpel W (1978) Reactions of oxygen with ZnO-1010-surfaces. J Vac Sci Technol 15:1298–1310

    Article  Google Scholar 

  88. Witko M, Tokarz-Sobieraj R (2004) Surface oxygen in catalysts based on transition metal oxides: what can we learn from cluster DFT calculations. Catal Today 91–92:171–176

    Article  Google Scholar 

  89. Vohrer U, Wiemhöfer HD, Göpel W, Van Hassel BA, Burggraaf AJ (1993) Electronic properties of ion-implanted yttria-stabilized zirconia. Solid State Ionics 59:141–149

    Article  Google Scholar 

  90. Liu Y, Ishihara A, Mitsushima S, Kamiya N, Ota K (2005) Zirconium oxide for PEFC cathodes. Electrochem Solid State Lett 8(8):A400–A402

    Article  Google Scholar 

  91. Liu Y, Ishihara A, Mitsushima S, Kamiya N, Ota K (2007) Transition metal oxides as DMFC cathodes without platinum. J Electrochem Soc 154(7):B664–B669

    Article  Google Scholar 

  92. Okamoto Y (2008) First-principles molecular dynamics simulation of O2 reduction on ZrO2 (111) surface. Appl Surf Sci 255:3434–3441

    Article  Google Scholar 

  93. Ohnishi R, Takahashi Y, Takagaki A, Kubota J, Domen K (2008) Niobium oxides as cathode electrocatalysts for platinum-free polymer electrolyte fuel cells. Chem Lett 37:838–839

    Article  Google Scholar 

  94. Takasu Y, Yoshinaga N, Sugumoto W (2008) Oxygen reduction behavior of RuO2/Ti, IrO2/Ti and IrM (M: Ru, Mo, W, V) Ox/Ti binary oxide electrodes in a sulfuric acid solution. Electrochem Commun 10:668–672

    Article  Google Scholar 

  95. Yoshinaga N, Sugimoto W, Takasu Y (2008) Oxygen reduction behavior of rutile-type iridium oxide in sulfuric acid solution. Electrochim Acta 54:566–573

    Article  Google Scholar 

  96. Takasu Y, Oohori K, Yoshinaga N, Sugimoto W (2009) An examination of the oxygen reduction reaction on RuO2-based oxide coatings formed on titanium substrates. Catal Today 146:248–252

    Article  Google Scholar 

  97. Takasu Y, Suzuki M, Yang H, Ohashi T, Sugimoto W (2010) Oxygen reduction characteristics of several valve metal oxide electrodes in HClO4 solution. Electrochim Acta 55:8220–8229

    Article  Google Scholar 

  98. Ishihara A, Shibata Y, Mitsushima S, Ota K (2008) Partially oxidized tantalum carbonitrides as a new nonplatinum cathode for PEFC–1–. J Electrochem Soc 155(4):B400–B406

    Article  Google Scholar 

  99. Ohgi Y, Ishihara A, Shibata Y, Mitsushima S, Ota K (2008) Catalytic activity of partially oxidized transition metal carbonitrides for oxygen reduction reaction in sulfuric acid. Chem Lett 37(6):608–609

    Article  Google Scholar 

  100. Nam KD, Ishihara A, Matsuzawa K, Mitsushima S, Matsumoto M, Imai H, Ota K (2010) Partially oxidized niobium carbonitride as non-platinum cathode for PEFC. Electrochim Acta 55:7290–7297

    Article  Google Scholar 

  101. Ishihara A, Tamura M, Matsuzawa K, Mitsushima S, Ota K (2010) Tantalum oxide-based compounds as new non-noble cathodes for polymer electrolyte fuel cell. Electrochim Acta 55(26):7581–7589

    Article  Google Scholar 

  102. Ishihara A, Tamura M, Matsuzawa K, Mitsushima S, Ota K (2011) Partially oxidized tantalum carbonitride as new cathodes without platinum group metals for polymer electrolyte fuel cell. J Fuel Cell Sci Technol 8:031005

    Article  Google Scholar 

  103. Imai H, Matsumoto M, Miyazaki T, Fujieda S, Ishihara A, Tamura M, Ota K (2010) Structural defects working as active oxygen-reduction sites in partially oxidized Ta-carbonitride core-shell particles probed by using surface-sensitive conversion-electron-yield x-ray absorption spectroscopy. Appl Phys Lett 96:191905

    Google Scholar 

  104. Ohgi Y, Ishihara A, Matsuzawa K, Mitsushima S, Ota K (2010) Zirconium oxide-based compound as new cathode without platinum group metals for PEFC. J Electrochem Soc 157:B885–B891

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support of the New Energy and Industrial Technology Development Organization (NEDO) for the development of oxide-based non-precious metal cathode for PEFCs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichiro Ota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Ota, Ki., Ishihara, A. (2013). Metal Oxide-Based Compounds as Electrocatalysts for Oxygen Reduction Reaction. In: Shao, M. (eds) Electrocatalysis in Fuel Cells. Lecture Notes in Energy, vol 9. Springer, London. https://doi.org/10.1007/978-1-4471-4911-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4911-8_13

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4910-1

  • Online ISBN: 978-1-4471-4911-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics