Skip to main content

Perceptual Validation and Analysis

  • Chapter
Visual Texture

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

  • 2101 Accesses

Abstract

Evaluation of how well texture models conform with human visual perception is important not only for assessing the similarities between model output and original textures, but also for optimal settings of model parameters, for fair comparison of distinct models, etc. This chapter offers an overview of various computational techniques for pixel-wise and statistical texture similarity evaluation, and discusses psychophysical approaches to making texture-processing algorithms more efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borg, I., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications. Springer, Berlin (2005)

    Google Scholar 

  2. Bovik, A.: Analysis of multichannel narrow-band filters for image texture segmentation. IEEE Trans. Signal Process. 39(9), 2025–2043 (1991)

    Article  Google Scholar 

  3. Caelli, T., Julesz, B.: On perceptual analyzers underlying visual texture discrimination: Part I. Biol. Cybern. 28, 167–175 (1978)

    Article  Google Scholar 

  4. Chandler, D., Hemami, S.: VSNR: A wavelet-based visual signal-to-noise ratio for natural images. IEEE Trans. Image Process. 16(9), 2284–2298 (2007)

    Article  MathSciNet  Google Scholar 

  5. Clarke, A., Halley, F., Newell, A., Griffin, L., Chantler, C.: Perceptual similarity: a texture challenge. In: Proceedings of the British Machine Vision Conference, pp. 120.1–120.0 (2011)

    Google Scholar 

  6. Clarke, A.D.F., Dong, X., Chantler, M.J.: Does free-sorting provide a good estimate of visual similarity. In: Proceedings of Predicting Perceptions 2012—the 3rd International Conference on Appearance, pp. 17–20 (2012)

    Google Scholar 

  7. Daly, S.: The visible differences predictor: an algorithm for the assessment of image fidelity. In: Digital Images and Human Vision, pp. 179–206 (1993)

    Google Scholar 

  8. Damera-Venkata, N., Kite, T., Geisler, W., Evans, B., Bovik, A.: Image quality assessment based on a degradation model. IEEE Trans. Image Process. 9(4), 636–650 (2000)

    Article  Google Scholar 

  9. Filip, J., Haindl, M.: Bidirectional texture function modeling: a state of the art survey. IEEE Trans. Pattern Anal. Mach. Intell. 31(11), 1921–1940 (2009)

    Article  Google Scholar 

  10. Filip, J., Haindl, M.: User study of viewing and illumination dependent material appearance. In: Proceedings of Predicting Perceptions 2012—the 3rd International Conference on Appearance, pp. 34–38 (2012)

    Google Scholar 

  11. Filip, J., Chantler, M., Green, P., Haindl, M.: A psychophysically validated metric for bidirectional texture data reduction. ACM Trans. Graph. 27(5), 138:1–138:11 (2008)

    Article  Google Scholar 

  12. Filip, J., Chantler, M., Haindl, M.: On optimal resampling of view and illumination dependent textures. In: Fifth Symposium on Applied Perception in Graphics and Visualization, pp. 131–134 (2008)

    Chapter  Google Scholar 

  13. Filip, J., Chantler, M., Haindl, M.: On uniform resampling and gaze analysis of bidirectional texture functions. ACM Trans. Appl. Percept. 6(3), 15 (2009)

    Article  Google Scholar 

  14. Filip, J., Haindl, M., Chantler, M.: Gaze-motivated compression of illumination and view dependent textures. In: Proceedings of the 20th International Conference on Pattern Recognition (ICPR), pp. 862–864 (2010)

    Google Scholar 

  15. Filip, J., Vacha, P., Haindl, M., Green, P.: A psychophysical evaluation of texture degradation descriptors. In: Proceedings of IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition. Lecture Notes in Computer Science, vol. 6218, pp. 423–433 (2010)

    Chapter  Google Scholar 

  16. Filip, J., Vácha, P., Haindl, M.: Analysis of human gaze interactions with texture and shape. In: Salerno, E., Çetin, A., Salvetti, O. (eds.) Computational Intelligence for Multimedia Understanding. Lecture Notes in Computer Science, vol. 7252, pp. 160–171. Springer, Berlin/Heidelberg (2012)

    Chapter  Google Scholar 

  17. Fleming, R.W., Dror, R.O., Adelson, E.H.: Real-world illumination and perception of surface reflectance properties. Journal of Vision 3, 347–368 (2003)

    Article  Google Scholar 

  18. Gaubatz, M.: MeTriX MuX visual quality assessment package. http://foulard.ece.cornell.edu/gaubatz/metrix_mux/ (2009)

  19. Gegenfurtner, K., Sharpe, L.: Color Vision: From Genes to Perception. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  20. Gurnsey, R., Fleet, D.: Texture space. Vis. Res. 41(6), 745–757 (2001)

    Article  Google Scholar 

  21. Haralick, R., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)

    Article  Google Scholar 

  22. Harvey, L., Gervais, M.: Internal representation of visual texture as the basis for the judgment of similarity. J. Exp. Psychol. Hum. Percept. Perform. 7(4), 741 (1981)

    Article  Google Scholar 

  23. Havran, V., Filip, J., Myszkowski, K.: Bidirectional texture function compression based on multi-level vector quantization. Comput. Graph. Forum 29(1), 175–190 (2010)

    Article  Google Scholar 

  24. Heaps, C., Handel, S.: Similarity and features of natural textures. J. Exp. Psychol. Hum. Percept. Perform. 25(2), 299 (1999)

    Article  Google Scholar 

  25. Ho, Y., Landy, M., Maloney, L.: Conjoint measurement of gloss and surface texture. Psychol. Sci. 19, 194–204 (2007)

    Google Scholar 

  26. Howell, D.: Statistical Methods for Psychology. Wadsworth, Belmont (2009)

    Google Scholar 

  27. Jain, A., Healey, G.: A multiscale representation including opponent colour features for texture recognition. IEEE Trans. Image Process. 7(1), 125–128 (1998)

    Article  Google Scholar 

  28. Julesz, B.: Visual pattern discrimination. IRE Trans. Inf. Theory 8(1), 84–92 (1962)

    Article  Google Scholar 

  29. Julesz, B.: Textons, the elements of texture perception and their interactions. Nature 290, 91–97 (1981)

    Article  Google Scholar 

  30. Julesz, B., Gilbert, E., Victor, J.: Visual discrimination of textures with identical third-order statistics. Biol. Cybern. 31, 137–140 (1978)

    Article  Google Scholar 

  31. Khan, E.A., Reinhard, E., Fleming, R.W., Bülthoff, H.H.: Image-based material editing. ACM Trans. Graph. 25(3), 654–663 (2006)

    Article  Google Scholar 

  32. Křivánek, J., Ferwerda, J., Bala, K.: Effects of global illumination approximations on material appearance. ACM Trans. Graph. 29(4), 112 (2010)

    Google Scholar 

  33. Landy, M.S., Graham, N.: Visual perception of texture. In: The Visual Neurosciences, pp. 1106–1118. MIT Press, Cambridge (2004)

    Google Scholar 

  34. Leung, T., Malik, J.: Representing and recognizing the visual appearance of materials using three-dimensional textons. Int. J. Comput. Vis. 43(1), 29–44 (2001)

    Article  MATH  Google Scholar 

  35. Long, H., Leow, W.: A hybrid model for invariant and perceptual texture mapping. In: 16th International Conference on Pattern Recognition, 2002. Proceedings, vol. 1, pp. 135–138. IEEE Press, New York (2002)

    Google Scholar 

  36. Ma, W.Y., Manjunath, B.S.: Texture Features and Learning Similarity, pp. 425–430. IEEE Press, New York (1996)

    Google Scholar 

  37. Malik, J., Perona, P.: Preattentive texture discrimination with early vision mechanisms. J. Opt. Soc. Am. A 7(5), 923–932 (1990)

    Article  Google Scholar 

  38. Mannos, J., Sakrison, D.: The effects of a visual fidelity criterion of the encoding of images. IEEE Trans. Inf. Theory 20(4), 525–536 (1974)

    Article  MATH  Google Scholar 

  39. Mantiuk, R.: Visible difference metric for high dynamic range images (implementation). http://www.mpi-inf.mpg.de/resources/hdr/vdp/ (2008)

  40. Mantiuk, R., Myszkowski, K., Seidel, H.P.: Visible difference predictor for high dynamic range images. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 3, pp. 2763–2769. IEEE Press, New York (2004)

    Google Scholar 

  41. Matusik, W., Pfister, H.P., Brand, M., McMillan, L.: A data-driven reflectance model. In: ACM SIGGRAPH 2003. ACM Press, Los Angeles (2003)

    Google Scholar 

  42. Meseth, J., Müller, G., Klein, R., Röder, F., Arnold, M.: Verification of rendering quality from measured BTFs. In: Third Symposium on Applied Perception in Graphics and Visualization (APGV), vol. 153, pp. 127–134 (2006)

    Chapter  Google Scholar 

  43. Mitsa, T., Varkur, K.: Evaluation of contrast sensitivity functions for the formulation of quality measures incorporated in halftoning algorithms. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, 1993. ICASSP-93, vol. 5, pp. 301–304. IEEE Press, New York (1993)

    Google Scholar 

  44. Mojsilovic, A., Kovacevic, J., Kall, D., Safranek, R., Kicha Ganapathy, S.: The vocabulary and grammar of color patterns. IEEE Trans. Image Process. 9(3), 417–431 (2000)

    Article  Google Scholar 

  45. Motoyoshi, I., Nishida, S., Sharan, L., Adelson, E.: Image statistics and the perception of surface qualities. Nature 447(10), 206–209 (2007)

    Article  Google Scholar 

  46. Müller, G., Meseth, J., Klein, R.: Compression and real-time rendering of measured BTFs using local PCA. In: Vision, Modeling and Visualisation 2003, pp. 271–280 (2003)

    Google Scholar 

  47. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  48. Padilla, S., Drbohlav, O., Green, P., Chantler, M.: Measurement of perceptual roughness in fractal surfaces. In: CIE Expert Symposium on Visual Appearance, pp. 61–66 (2006)

    Google Scholar 

  49. Peli, E.: Contrast in complex images. J. Opt. Soc. Am. A 7(10), 2032–2040 (1990)

    Article  Google Scholar 

  50. Pellacini, F., Ferwerda, J., Greenberg, D.: Toward a psychophysically-based light reflection model for image synthesis. In: 27th International Conference on Computer Graphics and Interactive Techniques, pp. 55–64 (2000)

    Google Scholar 

  51. Pont, S., Sen, P., Hanrahan, P.: \(2\frac{1}{2}\)d texture mapping: real-time perceptual surface roughening. In: 4th Symposium on Applied Perception in Graphics and Vizualization, pp. 69–72 (2007)

    Chapter  Google Scholar 

  52. Ramanarayanan, G., Ferwerda, J., Walter, B., Bala, K.: Visual equivalence: towards a new standard for image fidelity. ACM Trans. Graph. 26(3), 76:1–76:10 (2007)

    Article  Google Scholar 

  53. Ramasubramanian, M., Pattanaik, S., Greenberg, D.: A perceptually based physical error metric for realistic image synthesis. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 73–82. ACM Press/Addison-Wesley, New York/Reading (1999)

    Google Scholar 

  54. Rao, V., Katz, R.: Alternative multidimensional scaling methods for large stimulus sets. J. Mark. Res. 8(4), 488–494 (1971)

    Article  Google Scholar 

  55. Ravishankar Rao, A., Lohse, G.: Towards a texture naming system: identifying relevant dimensions of texture. Vis. Res. 36(11), 1649–1669 (1996)

    Article  Google Scholar 

  56. Sampat, M.P., Wang, Z., Gupta, S., Bovik, A.C., Markey, M.K.: Complex wavelet structural similarity: a new image similarity index. IEEE Trans. Image Process. 18(11), 2385–2401 (2009)

    Article  MathSciNet  Google Scholar 

  57. Sheikh, H., Bovik, A.: Image information and visual quality. IEEE Trans. Image Process. 15(2), 430–444 (2006)

    Article  Google Scholar 

  58. Shepard, R.: The analysis of proximities: multidimensional scaling with an unknown distance function. I. Psychometrika 27(2), 125–140 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  59. Smith, T., Guild, J.: The C.I.E. colorimetric standards and their use. Trans. Opt. Soc. 33(73), 73–134 (1931)

    Article  Google Scholar 

  60. Tamura, H., Mori, S., Yamawaki, T.: Textural features corresponding to visual perception. IEEE Trans. Syst. Man Cybern. 8(6), 460–473 (1978)

    Article  Google Scholar 

  61. te Pas, S.F., Pont, S.C.: A comparison of material and illumination discrimination performance for real rough, real smooth and computer generated smooth spheres. In: 2nd Symp. on Applied Perception in Graphics and Visualization, pp. 57–58 (2005)

    Google Scholar 

  62. te Pas, S.F., Pont, S.C.: Estimations of light-source direction depend critically on material BRDFs. Perception (ECVP Abstract Suppl.) 34, 212 (2005)

    Google Scholar 

  63. Tenenbaum, J., De Silva, V., Langford, J.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  64. Vangorp, P., Laurijssen, J., Dutre, P.: The influence of shape on the perception of material reflectance. ACM Trans. Graph. 26(3), 77:1–77:10 (2007)

    Article  Google Scholar 

  65. Vanrell, M., Vitria, J.: A four-dimensional texture representation space. Pattern Recognit. Image Anal. 1, 245–250 (1997)

    Google Scholar 

  66. Vanrell, M., Vitria, J., Roca, X.: A multidimensional scaling approach to explore the behavior of a texture perception algorithm. Mach. Vis. Appl. 9(5/6), 262–271 (1997)

    Article  Google Scholar 

  67. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  68. Westlund, H.B., Meyer, G.W.: Applying appearance standards to light reflection models. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’01, pp. 501–510. ACM, New York (2001)

    Chapter  Google Scholar 

  69. Wichmann, F., Hill, N.: The psychometric function: I. fitting, sampling, and goodness of fit. Percept. Psychophys. 63(8), 1293–1313 (2001)

    Article  Google Scholar 

  70. Winer, B.: Statistical Principles in Experimental Design. McGraw-Hill, New York (1962)

    Book  Google Scholar 

  71. Yee, Y., Newman, A.: A perceptual metric for production testing. In: ACM SIGGRAPH 2004 Sketches, p. 121. ACM, New York (2004)

    Chapter  Google Scholar 

  72. Yellott, J.: Implications of triple correlation uniqueness for texture statistics and the Julesz conjecture. J. Opt. Soc. Am. 10(5), 777–793 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Haindl, M., Filip, J. (2013). Perceptual Validation and Analysis. In: Visual Texture. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-4902-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4902-6_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4901-9

  • Online ISBN: 978-1-4471-4902-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics