Abstract
The surface texture of smooth materials, e.g., polished woods or stones, etc., has an appearance which exhibits material-specific behavior dependent on viewing and lighting conditions. To account for these appearance factors such textures can be represented by Spatially Varying BRDFs (SVBRDF). The SVBRDF representation of material can be viewed as a spatial collection of BRDFs distributed over the surface to simulate the appearance of smooth materials. As an essential part of SVBRDF representations are BRDFs, this chapter starts with description of Bidirectional Reflectance Distribution Functions (BRDFs) and their parameterization, compression, and modeling methods. Next, techniques of their spatial extension to SVBRDF modeling and editing are described.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Ashikhmin, M., Premoze, S., Shirley, P.: A microfacet-based BRDF generator. In: Akeley, K. (ed.) ACM SIGGRAPH 2000, pp. 65–74. ACM, New York (2000)
Ashikhmin, M., Shirley, P.: An anisotropic Phong light reflection model. J. Graph. Tools 5(2), 25–32 (2000)
Banks, D.: Illumination in diverse codimensions. In: ACM SIGGRAPH 1994, pp. 327–334. ACM, New York (1994).
Ben-Artzi, A., Overbeck, R., Ramamoorthi, R.: Real-time BRDF editing in complex lighting. In: SIGGRAPH’06, ACM SIGGRAPH 2006 Papers, pp. 945–954. ACM, New York (2006)
Blinn, J.: Models of light reflection for computer synthesized pictures. SIGGRAPH Comput. Graph. 11, 192–198 (1977)
Chen, W., Bouguet, J., Chu, M., Grzeszczuk, R.: Light field mapping: efficient representation and hardware rendering of surface light fields. In: ACM SIGGRAPH 2002, pp. 447–456. ACM, New York (2002).
Clarke, F., Parry, D.: Helmholtz reciprocity: Its validity and application to reflectometry. Light. Res. Technol. 17(1), 1–11 (1985)
Cook, R., Torrance, K.: A reflectance model for computer graphics. In: ACM SIGGRAPH 1981, vol. 15(3), pp. 307–316. ACM, New York (1981)
DeYoung, J., Fournier, A.: Properties of tabulated bidirectional reflectance distribution functions. In: Davis, W.A., Mantei, M.M., Klassen, R.V. (eds.) Proceedings of the Graphics Interface 1997 Conference, May 21–23, pp. 47–55. Canadian Human–Computer Communications Society, Toronto (1997)
Dong, Y., Wang, J., Tong, X., Snyder, J., Lan, Y., Ben-Ezra, M., Guo, B.: Manifold bootstrapping for SVBRDF capture. In: SIGGRAPH’10, ACM SIGGRAPH 2010 Papers, SIGGRAPH’10, pp. 98:1–98:10. ACM, New York (2010)
Dorsey, J., Hanrahan, P.: Modeling and rendering of metallic patinas. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’96, pp. 387–396. ACM, New York (1996)
Duer, A.: An improved normalization for the ward reflectance model. J. Graphics Tools 11(1) (2006)
Edwards, D., Boulos, S., Johnson, J., Shirley, P., Ashikhmin, M., Stark, M., Wyman, C.: The halfway vector disk for BRDF modeling. ACM Trans. Graph. 25, 1–18 (2006)
Ershov, S., Kolchin, K., Myszkowski, K.: Rendering pearlescent appearance based on paint-composition modelling. Comput. Graph. Forum 20(3), 227–238 (2001)
Filip, J.: Restoring illumination and view dependent data from sparse samples. In: Proceedings of the 21st International Conference on Pattern Recognition, ICPR 2012, pp. 1391–1394 (2012)
Forés, A., Pattanaik, S.N., Bosch, C., Pueyo, X.: BRDFLab: a general system for designing BRDFs. In: XIX Congreso Espa nol de Informática Gráfica (CEIG’09), San Sebastián, Spain (2009)
Gardner, A., Tchou, C., Hawkins, T., Debevec, P.: Linear light source reflectometry. In: SIGGRAPH’03, ACM SIGGRAPH 2003 Papers, pp. 749–758. ACM, New York (2003)
Gargan, D., Neelamkavil, F.: Approximating reflectance functions using neural networks. In: Rendering Techniques’98, pp. 23–34 (1998)
Granier, X., Heidrich, W.: A simple layered RGB BRDF model. Graph. Models 65, 171–184 (2003)
Günther, J.T.C., Goesele, M., Wald, I., Seidel, H.P.: Efficient acquisition and realistic rendering of car paint. In: Greiner, G., Hornegger, J., Niemann, H., Stamminger, M. (eds.) Proceedings of 10th International Fall Workshop—Vision, Modeling, and Visualization (VMV) 2005, pp. 487–494. Akad. Verlagsgesellschaft, Frankfurt-am-Main (2005)
Haar, A.: Zur theorie der orthogonalen funktionensysteme. Math. Ann. 69, 331–371 (1910)
Hanrahan, P., Krueger, W.: Reflection from layered surfaces due to subsurface scattering. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’93, pp. 165–174. ACM, New York (1993)
Havran, V., Dmitriev, K., Seidel, H.P.: Goniometric diagram mapping for hemisphere. In: Eurographics 2003. Short presentations (2003)
Havran, V., Filip, J., Myszkowski, K.: Bidirectional texture function compression based on multi-level vector quantization. Comput. Graph. Forum 29(1), 175–190 (2010)
He, X., Torrance, K., Sillion, F., Greenberg, D.: A comprehensive physical model for light reflection. Comput. Graph. 25(4) (1991)
He, X.D., Heynen, P.O., Phillips, R.L., Torrance, K.E., Salesin, D.H., Greenberg, D.P.: A fast and accurate light reflection model. SIGGRAPH Comput. Graph. 26, 253–254 (1992)
Hecht, E.: Optics. Pearson Education. Addison-Wesley, Reading (2002)
Icart, I., Arquès, D.: A physically-based BRDF model for multilayer systems with uncorrelated rough boundaries. In: Proceedings of the Eurographics Workshop on Rendering Techniques 2000, pp. 353–364 (2000)
Kautz, J., McCool, M.: Interactive rendering with arbitrary BRDFs using separable approximations. In: Proceedings of the 10th Eurographics Workshop on Rendering, pp. 281–292 (1999)
Kautz, J., Sattler, M., Sarlette, R., Klein, R., Seidel, H.P.: Decoupling BRDFs from surface mesostructures. In: Proceedings of the Graphics Interface 2004 Conference, pp. 177–184 (2004)
Kautz, J., Sloan, P.P., Snyder, J.: Fast, arbitrary BRDF shading for low-frequency lighting using spherical harmonics. In: Proceedings of the 12th Eurographics Workshop on Rendering, pp. 301–308 (2002)
Koenderink, J.J., Doorn A.J.v., Stavridi, M.: Bidirectional reflection distribution function expressed in terms of surface scattering modes. In: Proceedings of the 4th European Conference on Computer Vision, ECCV’96, vol. II. pp. 28–39. Springer, London (1996)
Kubelka, P.F.M.: Ein beitrag zur optik der farbanstriche. Z. Tech. Phys. 12, 593–601 (1931)
Kurt, M., Szirmay-Kalos, L., Křivánek, J.: An anisotropic BRDF model for fitting and Monte Carlo rendering. SIGGRAPH Comput. Graph. 44, 3:1–3:15 (2010)
Lafortune, E.P., Foo, S.C., Torrance, K.E., Greenberg, D.P.: Non-linear approximation of reflectance functions. In: Computer Graphics. Annual Conference Series, vol. 31, pp. 117–126 (1997)
Lalonde, P., Fournier, A.: Filtered local shading in the wavelet domain. In: Proceedings of the Eurographics Workshop on Rendering Techniques’97, pp. 163–174. Springer, London (1997)
Latta, L., Kolb, A.: Homomorphic factorization of BRDF-based lighting computation. In: ACM SIGGRAPH 2002, vol. 21, pp. 509–516. ACM, New York (2002)
Lawrence, J., Ben-Artzi, A., DeCoro, C., Matusik, W., Pfister, H., Ramamoorthi, R., Rusinkiewicz, S.: Inverse shade trees for non-parametric material representation and editing. ACM Trans. Graph. 25(3), 735–745 (2006)
Lensch, H.P.A., Kautz, J., Goesele, M., Heidrich, W., Seidel, H.P.: Image-based reconstruction of spatial appearance and geometric detail. ACM Trans. Graph. 22, 234–257 (2003)
Lepage, D., Lawrence, J.: Material matting. ACM Trans. Graph. 30(6), 144:1–144:10 (2011)
Lewis, R.: Making shaders more physically plausible. Comput. Graph. Forum 13(2), 109–120 (1994)
Marschner, S., Westin, S., Arbree, A., Moon, J.: Measuring and modeling the appearance of finished wood. ACM Trans. Graph. 24(3), 727–734 (2005)
Matusik, W., Ajdin, B., Gu, J., Lawrence, J., Lensch, H.A., Pellacini, F., Rusinkiewicz, S.: Printing spatially-varying reflectance. In: SIGGRAPH Asia’09, ACM SIGGRAPH Asia 2009 Papers, pp. 128:1–128:9. ACM, New York (2009)
Matusik, W., Pfister, H.P., Brand, M., McMillan, L.: A data-driven reflectance model. In: ACM SIGGRAPH 2003. ACM, Los Angeles (2003)
McAllister, D.K.: A generalized surface appearance representation for computer graphics. Ph.D. thesis, University of North Carolina at Chapel Hill (2002)
McCool, M., Ang, J., Ahmad, A.: Homomorphic factorization of BRDFs for high-performance rendering. In: ACM SIGGRAPH 2001, pp. 185–194. ACM, New York (2001)
Minnaert, M.: The reciprocity principle in lunar photometry. Astrophys. J. 93, 403–410 (1941)
Nayar, S., Oren, M.: Generalization of the Lambertian model and implications for machine vision. Int. J. Comput. Vis. 14, 227–251 (1995)
Neumann, A.: Constructions of bidirectional reflection distribution functions. Ph.D. thesis. Vienna University of Technology, Institute of Computer Graphics and Algorithms, Vienna, Austria (2001)
Neumann, L., Neumann, A.: Photosimulation interreflection with arbitrary reflection models and illumination. Comput. Graph. Forum 8, 21–34 (1989)
Neumann, L., Neumann, A., Szirmay-Kalos, L.: Compact metallic reflectance models. Comput. Graph. Forum 18(13) (1999)
Ngan, A., Durand, F., Matusik, W.: Experimental analysis of BRDF models. In: Eurographics Symposium on Rendering 2005, pp. 117–126 (2005)
Nicodemus, F.J.C.R., Hsia, J., Ginsburg, I., Limperis, T.: Geometrical considerations and nomenclature for reflectance. NBS Monograph, vol. 160, pp. 1–52. National Bureau of Standards, U.S. Department of Commerce, Washington (1977)
Öztürk, A., Kurt, M., Bilgili, A.: A copula-based BRDF model. Comput. Graph. Forum 29(6), 1795–1806 (2010)
Öztürk, A., Kurt, M., Bilgili, A.: Modeling BRDF by a probability distribution. In: Proceedings of the 20th International Conference on Computer Graphics and Vision, St. Petersburg, Russia, pp. 57–63 (2010)
Pellacini, F., Lawrence, J.: AppWand: editing measured materials using appearance-driven optimization. ACM Trans. Graph. 26(3), 54:1–54:10 (2007)
Phong, B.T.: Illumination for computer generated images. Commun. ACM 18(6), 311–317 (1975)
Ren, P., Wang, J., Snyder, J., Tong, X., Guo, B.: Pocket reflectometry. In: SIGGRAPH’11, ACM SIGGRAPH 2011 Papers, pp. 45:1–45:10. ACM, New York (2011)
Rump, M., Möller, G., Sarlette, R., Koch, D., Klein, R.: Photo-realistic rendering of metallic car paint from image-based measurements. Comput. Graph. Forum 27(2), 527–536 (2008)
Rump, M., Sarlette, R., Klein, R.: Efficient resampling, compression and rendering of metallic and pearlescent paint. In: Magnor, M., Rosenhahn, B., Theisel, H. (eds.) Vision, Modeling, and Visualization, pp. 11–18 (2009)
Rusinkiewicz, S.: A new change of variables for efficient BRDF representation. In: Rendering Techniques’ 98: Proceedings of the Eurographics Workshop in Vienna, Austria, June 29–July 1, 1998, p. 11. Springer, Wien (1998)
Sattler, M., Sarlette, R., Klein, R.: Efficient and realistic visualization of cloth. In: Eurographics Symposium on Rendering 2003, pp. 167–178 (2003)
Schlick, C.: An inexpensive BRDF model for physically-based rendering. Comput. Graph. Forum (EUROGRAPHICS’94) 13(3), 149–162 (1994)
Schröder, P., Sweldens, W.: Spherical wavelets: efficiently representing functions on the sphere. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’95, pp. 161–172 (1995)
Shirley, P., Hu, H., Smith, B., Lafortune, E.: A practitioners’ assessment of light reflection model. In: Proceedings of Pacific Graphics’97, pp. 40–49. IEEE Comput. Soc., Los Alamitos (1997)
Sloan, P.P., Kautz, J., Snyder, J.: Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In: ACM SIGGRAPH 2000, pp. 527–536. ACM, New York (2002)
Snyder, W.: Definition and invariance properties of structured surface BRDF. IEEE Trans. Geosci. Remote Sens. 40(5), 1032–1037 (2002)
Stam, J.: Diffraction shaders. In: ACM SIGGRAPH 1999, pp. 101–110. ACM, New York (1999)
Stark, M., Arvo, J., Smits, B.: Barycentric parameterizations for isotropic BRDFs. IEEE Trans. Vis. Comput. Graph. 11(2), 126–138 (2005)
Sun, X., Zhou, K., Chen, Y., Lin, S., Shi, J., Guo, B.: Interactive relighting with dynamic BRDFs. ACM Trans. Graph. 26, 27:1–27:10 (2007)
Torrance, K., Sparrow, E.: Theory for off-specular reflection from rough surfaces. J. Opt. Soc. Am. 57(9), 1105–1114 (1967)
Ďurikovič, R., Martens, W.L.: Simulation of sparkling and depth effect in paints. In: Proceedings of the 19th Spring Conference on Computer Graphics, SCCG’03, pp. 193–198. ACM, New York (2003)
Walter, B.: Notes on the ward BRDF. Tech. Rep. Technical report PCG-05-06, Program of Computer Graphics, Cornell University (2005)
Wang, J., Zhao, S., Tong, X., Snyder, J., Guo, B.: Modeling anisotropic surface reflectance with example-based microfacet synthesis. In: SIGGRAPH’08, ACM SIGGRAPH 2008 Papers, pp. 41:1–41:9. ACM, New York (2008)
Ward, G.: Measuring and modeling anisotropic reflection. Comput. Graph. 26(2) (1992)
Ward, G., Rubinstein, F., Clear, R.: A ray tracing solution for diffuse interreflection. Comput. Graph. 22(4), 85–92 (1988)
Weidlich, A., Wilkie, A.: Arbitrarily layered micro-facet surfaces. In: Proceedings of the 5th International Conference on Computer Graphics and Interactive Techniques in Australia and Southeast Asia, GRAPHITE’07, pp. 171–178. ACM, New York (2007)
Wenger, A., Gardner, A., Tchou, C., Unger, J., Hawkins, T., Debevec, P.: Performance relighting and reflectance transformation with time-multiplexed illumination. ACM Trans. Graph. 24, 756–764 (2005)
Westin, S.H., Arvo, J.R., Torrance, K.E.: Predicting reflectance functions from complex surfaces. In: Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’92, pp. 255–264 (1992)
Westin, S.H., Li, H., Torrance, K.E.: A comparison of four BRDF models. Tech. Rep. Technical report PCG-04-02, Program of Computer Graphics, Cornell University (2004)
Westin, S.H., Li, H., Torrance, K.E.: A field guide to BRDF models. Technical report PCG-04-01, Program of Computer Graphics, Cornell University (2004)
Weyrich, T., Matusik, W., Pfister, H., Bickel, B., Donner, C., Tu, C., McAndless, J., Lee, J., Ngan, A., Jensen, H.W., Gross, M.: Analysis of human faces using a measurement-based skin reflectance model. In: SIGGRAPH’06, ACM SIGGRAPH 2006 Papers, pp. 1013–1024. ACM, New York (2006)
Wolff, L.B., Boult, T.E.: Constraining object features using a polarization reflectance model. In: Wolff, L.B., Shafer, S.A., Healey, G. (eds.) Radiometry, pp. 167–189. Jones & Bartlett, Boston (1992)
Wong, T.T., Heng, P.A., Or, S.H., Ng, W.Y.: Image-based rendering with controllable illumination. In: Dorsey, J., Slusallek, P. (eds.) Rendering Techniques’97 (Proceedings of the Eighth Eurographics Workshop on Rendering), pp. 13–22. Springer, New York (1997)
Wu, H., Dorsey, J., Rushmeier, H.: Physically-based interactive bi-scale material design. ACM Trans. Graph. 30(6), 145:1–145:10 (2011)
Wyszecky, G., Stiles, W.S.: Color Science. Concepts and Methods, Quantitative Data, Formulae, 2nd edn. Wiley, New York (1982)
von Zernike, F.: Beugungstheorie des Schneidenverfahrens und seiner verbesserten form, der Phasenkontrastmethode. Physica 1(7–12), 689–704 (1934)
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag London
About this chapter
Cite this chapter
Haindl, M., Filip, J. (2013). Spatially Varying Bidirectional Reflectance Distribution Functions. In: Visual Texture. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-4902-6_6
Download citation
DOI: https://doi.org/10.1007/978-1-4471-4902-6_6
Publisher Name: Springer, London
Print ISBN: 978-1-4471-4901-9
Online ISBN: 978-1-4471-4902-6
eBook Packages: Computer ScienceComputer Science (R0)