Skip to main content

Spatially Varying Bidirectional Reflectance Distribution Functions

  • Chapter
Visual Texture

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

The surface texture of smooth materials, e.g., polished woods or stones, etc., has an appearance which exhibits material-specific behavior dependent on viewing and lighting conditions. To account for these appearance factors such textures can be represented by Spatially Varying BRDFs (SVBRDF). The SVBRDF representation of material can be viewed as a spatial collection of BRDFs distributed over the surface to simulate the appearance of smooth materials. As an essential part of SVBRDF representations are BRDFs, this chapter starts with description of Bidirectional Reflectance Distribution Functions (BRDFs) and their parameterization, compression, and modeling methods. Next, techniques of their spatial extension to SVBRDF modeling and editing are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashikhmin, M., Premoze, S., Shirley, P.: A microfacet-based BRDF generator. In: Akeley, K. (ed.) ACM SIGGRAPH 2000, pp. 65–74. ACM, New York (2000)

    Google Scholar 

  2. Ashikhmin, M., Shirley, P.: An anisotropic Phong light reflection model. J. Graph. Tools 5(2), 25–32 (2000)

    Article  Google Scholar 

  3. Banks, D.: Illumination in diverse codimensions. In: ACM SIGGRAPH 1994, pp. 327–334. ACM, New York (1994).

    Google Scholar 

  4. Ben-Artzi, A., Overbeck, R., Ramamoorthi, R.: Real-time BRDF editing in complex lighting. In: SIGGRAPH’06, ACM SIGGRAPH 2006 Papers, pp. 945–954. ACM, New York (2006)

    Chapter  Google Scholar 

  5. Blinn, J.: Models of light reflection for computer synthesized pictures. SIGGRAPH Comput. Graph. 11, 192–198 (1977)

    Article  Google Scholar 

  6. Chen, W., Bouguet, J., Chu, M., Grzeszczuk, R.: Light field mapping: efficient representation and hardware rendering of surface light fields. In: ACM SIGGRAPH 2002, pp. 447–456. ACM, New York (2002).

    Google Scholar 

  7. Clarke, F., Parry, D.: Helmholtz reciprocity: Its validity and application to reflectometry. Light. Res. Technol. 17(1), 1–11 (1985)

    Article  Google Scholar 

  8. Cook, R., Torrance, K.: A reflectance model for computer graphics. In: ACM SIGGRAPH 1981, vol. 15(3), pp. 307–316. ACM, New York (1981)

    Google Scholar 

  9. DeYoung, J., Fournier, A.: Properties of tabulated bidirectional reflectance distribution functions. In: Davis, W.A., Mantei, M.M., Klassen, R.V. (eds.) Proceedings of the Graphics Interface 1997 Conference, May 21–23, pp. 47–55. Canadian Human–Computer Communications Society, Toronto (1997)

    Google Scholar 

  10. Dong, Y., Wang, J., Tong, X., Snyder, J., Lan, Y., Ben-Ezra, M., Guo, B.: Manifold bootstrapping for SVBRDF capture. In: SIGGRAPH’10, ACM SIGGRAPH 2010 Papers, SIGGRAPH’10, pp. 98:1–98:10. ACM, New York (2010)

    Google Scholar 

  11. Dorsey, J., Hanrahan, P.: Modeling and rendering of metallic patinas. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’96, pp. 387–396. ACM, New York (1996)

    Chapter  Google Scholar 

  12. Duer, A.: An improved normalization for the ward reflectance model. J. Graphics Tools 11(1) (2006)

    Google Scholar 

  13. Edwards, D., Boulos, S., Johnson, J., Shirley, P., Ashikhmin, M., Stark, M., Wyman, C.: The halfway vector disk for BRDF modeling. ACM Trans. Graph. 25, 1–18 (2006)

    Article  Google Scholar 

  14. Ershov, S., Kolchin, K., Myszkowski, K.: Rendering pearlescent appearance based on paint-composition modelling. Comput. Graph. Forum 20(3), 227–238 (2001)

    Article  Google Scholar 

  15. Filip, J.: Restoring illumination and view dependent data from sparse samples. In: Proceedings of the 21st International Conference on Pattern Recognition, ICPR 2012, pp. 1391–1394 (2012)

    Google Scholar 

  16. Forés, A., Pattanaik, S.N., Bosch, C., Pueyo, X.: BRDFLab: a general system for designing BRDFs. In: XIX Congreso Espa nol de Informática Gráfica (CEIG’09), San Sebastián, Spain (2009)

    Google Scholar 

  17. Gardner, A., Tchou, C., Hawkins, T., Debevec, P.: Linear light source reflectometry. In: SIGGRAPH’03, ACM SIGGRAPH 2003 Papers, pp. 749–758. ACM, New York (2003)

    Chapter  Google Scholar 

  18. Gargan, D., Neelamkavil, F.: Approximating reflectance functions using neural networks. In: Rendering Techniques’98, pp. 23–34 (1998)

    Chapter  Google Scholar 

  19. Granier, X., Heidrich, W.: A simple layered RGB BRDF model. Graph. Models 65, 171–184 (2003)

    Article  Google Scholar 

  20. Günther, J.T.C., Goesele, M., Wald, I., Seidel, H.P.: Efficient acquisition and realistic rendering of car paint. In: Greiner, G., Hornegger, J., Niemann, H., Stamminger, M. (eds.) Proceedings of 10th International Fall Workshop—Vision, Modeling, and Visualization (VMV) 2005, pp. 487–494. Akad. Verlagsgesellschaft, Frankfurt-am-Main (2005)

    Google Scholar 

  21. Haar, A.: Zur theorie der orthogonalen funktionensysteme. Math. Ann. 69, 331–371 (1910)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hanrahan, P., Krueger, W.: Reflection from layered surfaces due to subsurface scattering. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’93, pp. 165–174. ACM, New York (1993)

    Chapter  Google Scholar 

  23. Havran, V., Dmitriev, K., Seidel, H.P.: Goniometric diagram mapping for hemisphere. In: Eurographics 2003. Short presentations (2003)

    Google Scholar 

  24. Havran, V., Filip, J., Myszkowski, K.: Bidirectional texture function compression based on multi-level vector quantization. Comput. Graph. Forum 29(1), 175–190 (2010)

    Article  Google Scholar 

  25. He, X., Torrance, K., Sillion, F., Greenberg, D.: A comprehensive physical model for light reflection. Comput. Graph. 25(4) (1991)

    Google Scholar 

  26. He, X.D., Heynen, P.O., Phillips, R.L., Torrance, K.E., Salesin, D.H., Greenberg, D.P.: A fast and accurate light reflection model. SIGGRAPH Comput. Graph. 26, 253–254 (1992)

    Article  Google Scholar 

  27. Hecht, E.: Optics. Pearson Education. Addison-Wesley, Reading (2002)

    Google Scholar 

  28. Icart, I., Arquès, D.: A physically-based BRDF model for multilayer systems with uncorrelated rough boundaries. In: Proceedings of the Eurographics Workshop on Rendering Techniques 2000, pp. 353–364 (2000)

    Chapter  Google Scholar 

  29. Kautz, J., McCool, M.: Interactive rendering with arbitrary BRDFs using separable approximations. In: Proceedings of the 10th Eurographics Workshop on Rendering, pp. 281–292 (1999)

    Google Scholar 

  30. Kautz, J., Sattler, M., Sarlette, R., Klein, R., Seidel, H.P.: Decoupling BRDFs from surface mesostructures. In: Proceedings of the Graphics Interface 2004 Conference, pp. 177–184 (2004)

    Google Scholar 

  31. Kautz, J., Sloan, P.P., Snyder, J.: Fast, arbitrary BRDF shading for low-frequency lighting using spherical harmonics. In: Proceedings of the 12th Eurographics Workshop on Rendering, pp. 301–308 (2002)

    Google Scholar 

  32. Koenderink, J.J., Doorn A.J.v., Stavridi, M.: Bidirectional reflection distribution function expressed in terms of surface scattering modes. In: Proceedings of the 4th European Conference on Computer Vision, ECCV’96, vol. II. pp. 28–39. Springer, London (1996)

    Google Scholar 

  33. Kubelka, P.F.M.: Ein beitrag zur optik der farbanstriche. Z. Tech. Phys. 12, 593–601 (1931)

    Google Scholar 

  34. Kurt, M., Szirmay-Kalos, L., Křivánek, J.: An anisotropic BRDF model for fitting and Monte Carlo rendering. SIGGRAPH Comput. Graph. 44, 3:1–3:15 (2010)

    Article  Google Scholar 

  35. Lafortune, E.P., Foo, S.C., Torrance, K.E., Greenberg, D.P.: Non-linear approximation of reflectance functions. In: Computer Graphics. Annual Conference Series, vol. 31, pp. 117–126 (1997)

    Google Scholar 

  36. Lalonde, P., Fournier, A.: Filtered local shading in the wavelet domain. In: Proceedings of the Eurographics Workshop on Rendering Techniques’97, pp. 163–174. Springer, London (1997)

    Google Scholar 

  37. Latta, L., Kolb, A.: Homomorphic factorization of BRDF-based lighting computation. In: ACM SIGGRAPH 2002, vol. 21, pp. 509–516. ACM, New York (2002)

    Google Scholar 

  38. Lawrence, J., Ben-Artzi, A., DeCoro, C., Matusik, W., Pfister, H., Ramamoorthi, R., Rusinkiewicz, S.: Inverse shade trees for non-parametric material representation and editing. ACM Trans. Graph. 25(3), 735–745 (2006)

    Article  Google Scholar 

  39. Lensch, H.P.A., Kautz, J., Goesele, M., Heidrich, W., Seidel, H.P.: Image-based reconstruction of spatial appearance and geometric detail. ACM Trans. Graph. 22, 234–257 (2003)

    Article  Google Scholar 

  40. Lepage, D., Lawrence, J.: Material matting. ACM Trans. Graph. 30(6), 144:1–144:10 (2011)

    Article  Google Scholar 

  41. Lewis, R.: Making shaders more physically plausible. Comput. Graph. Forum 13(2), 109–120 (1994)

    Article  Google Scholar 

  42. Marschner, S., Westin, S., Arbree, A., Moon, J.: Measuring and modeling the appearance of finished wood. ACM Trans. Graph. 24(3), 727–734 (2005)

    Article  Google Scholar 

  43. Matusik, W., Ajdin, B., Gu, J., Lawrence, J., Lensch, H.A., Pellacini, F., Rusinkiewicz, S.: Printing spatially-varying reflectance. In: SIGGRAPH Asia’09, ACM SIGGRAPH Asia 2009 Papers, pp. 128:1–128:9. ACM, New York (2009)

    Google Scholar 

  44. Matusik, W., Pfister, H.P., Brand, M., McMillan, L.: A data-driven reflectance model. In: ACM SIGGRAPH 2003. ACM, Los Angeles (2003)

    Google Scholar 

  45. McAllister, D.K.: A generalized surface appearance representation for computer graphics. Ph.D. thesis, University of North Carolina at Chapel Hill (2002)

    Google Scholar 

  46. McCool, M., Ang, J., Ahmad, A.: Homomorphic factorization of BRDFs for high-performance rendering. In: ACM SIGGRAPH 2001, pp. 185–194. ACM, New York (2001)

    Google Scholar 

  47. Minnaert, M.: The reciprocity principle in lunar photometry. Astrophys. J. 93, 403–410 (1941)

    Article  Google Scholar 

  48. Nayar, S., Oren, M.: Generalization of the Lambertian model and implications for machine vision. Int. J. Comput. Vis. 14, 227–251 (1995)

    Article  Google Scholar 

  49. Neumann, A.: Constructions of bidirectional reflection distribution functions. Ph.D. thesis. Vienna University of Technology, Institute of Computer Graphics and Algorithms, Vienna, Austria (2001)

    Google Scholar 

  50. Neumann, L., Neumann, A.: Photosimulation interreflection with arbitrary reflection models and illumination. Comput. Graph. Forum 8, 21–34 (1989)

    Article  Google Scholar 

  51. Neumann, L., Neumann, A., Szirmay-Kalos, L.: Compact metallic reflectance models. Comput. Graph. Forum 18(13) (1999)

    Google Scholar 

  52. Ngan, A., Durand, F., Matusik, W.: Experimental analysis of BRDF models. In: Eurographics Symposium on Rendering 2005, pp. 117–126 (2005)

    Google Scholar 

  53. Nicodemus, F.J.C.R., Hsia, J., Ginsburg, I., Limperis, T.: Geometrical considerations and nomenclature for reflectance. NBS Monograph, vol. 160, pp. 1–52. National Bureau of Standards, U.S. Department of Commerce, Washington (1977)

    Google Scholar 

  54. Öztürk, A., Kurt, M., Bilgili, A.: A copula-based BRDF model. Comput. Graph. Forum 29(6), 1795–1806 (2010)

    Article  Google Scholar 

  55. Öztürk, A., Kurt, M., Bilgili, A.: Modeling BRDF by a probability distribution. In: Proceedings of the 20th International Conference on Computer Graphics and Vision, St. Petersburg, Russia, pp. 57–63 (2010)

    Google Scholar 

  56. Pellacini, F., Lawrence, J.: AppWand: editing measured materials using appearance-driven optimization. ACM Trans. Graph. 26(3), 54:1–54:10 (2007)

    Article  Google Scholar 

  57. Phong, B.T.: Illumination for computer generated images. Commun. ACM 18(6), 311–317 (1975)

    Article  Google Scholar 

  58. Ren, P., Wang, J., Snyder, J., Tong, X., Guo, B.: Pocket reflectometry. In: SIGGRAPH’11, ACM SIGGRAPH 2011 Papers, pp. 45:1–45:10. ACM, New York (2011)

    Google Scholar 

  59. Rump, M., Möller, G., Sarlette, R., Koch, D., Klein, R.: Photo-realistic rendering of metallic car paint from image-based measurements. Comput. Graph. Forum 27(2), 527–536 (2008)

    Article  Google Scholar 

  60. Rump, M., Sarlette, R., Klein, R.: Efficient resampling, compression and rendering of metallic and pearlescent paint. In: Magnor, M., Rosenhahn, B., Theisel, H. (eds.) Vision, Modeling, and Visualization, pp. 11–18 (2009)

    Google Scholar 

  61. Rusinkiewicz, S.: A new change of variables for efficient BRDF representation. In: Rendering Techniques’ 98: Proceedings of the Eurographics Workshop in Vienna, Austria, June 29–July 1, 1998, p. 11. Springer, Wien (1998)

    Google Scholar 

  62. Sattler, M., Sarlette, R., Klein, R.: Efficient and realistic visualization of cloth. In: Eurographics Symposium on Rendering 2003, pp. 167–178 (2003)

    Google Scholar 

  63. Schlick, C.: An inexpensive BRDF model for physically-based rendering. Comput. Graph. Forum (EUROGRAPHICS’94) 13(3), 149–162 (1994)

    Google Scholar 

  64. Schröder, P., Sweldens, W.: Spherical wavelets: efficiently representing functions on the sphere. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’95, pp. 161–172 (1995)

    Chapter  Google Scholar 

  65. Shirley, P., Hu, H., Smith, B., Lafortune, E.: A practitioners’ assessment of light reflection model. In: Proceedings of Pacific Graphics’97, pp. 40–49. IEEE Comput. Soc., Los Alamitos (1997)

    Google Scholar 

  66. Sloan, P.P., Kautz, J., Snyder, J.: Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In: ACM SIGGRAPH 2000, pp. 527–536. ACM, New York (2002)

    Google Scholar 

  67. Snyder, W.: Definition and invariance properties of structured surface BRDF. IEEE Trans. Geosci. Remote Sens. 40(5), 1032–1037 (2002)

    Article  Google Scholar 

  68. Stam, J.: Diffraction shaders. In: ACM SIGGRAPH 1999, pp. 101–110. ACM, New York (1999)

    Google Scholar 

  69. Stark, M., Arvo, J., Smits, B.: Barycentric parameterizations for isotropic BRDFs. IEEE Trans. Vis. Comput. Graph. 11(2), 126–138 (2005)

    Article  Google Scholar 

  70. Sun, X., Zhou, K., Chen, Y., Lin, S., Shi, J., Guo, B.: Interactive relighting with dynamic BRDFs. ACM Trans. Graph. 26, 27:1–27:10 (2007)

    Google Scholar 

  71. Torrance, K., Sparrow, E.: Theory for off-specular reflection from rough surfaces. J. Opt. Soc. Am. 57(9), 1105–1114 (1967)

    Article  Google Scholar 

  72. Ďurikovič, R., Martens, W.L.: Simulation of sparkling and depth effect in paints. In: Proceedings of the 19th Spring Conference on Computer Graphics, SCCG’03, pp. 193–198. ACM, New York (2003)

    Google Scholar 

  73. Walter, B.: Notes on the ward BRDF. Tech. Rep. Technical report PCG-05-06, Program of Computer Graphics, Cornell University (2005)

    Google Scholar 

  74. Wang, J., Zhao, S., Tong, X., Snyder, J., Guo, B.: Modeling anisotropic surface reflectance with example-based microfacet synthesis. In: SIGGRAPH’08, ACM SIGGRAPH 2008 Papers, pp. 41:1–41:9. ACM, New York (2008)

    Google Scholar 

  75. Ward, G.: Measuring and modeling anisotropic reflection. Comput. Graph. 26(2) (1992)

    Google Scholar 

  76. Ward, G., Rubinstein, F., Clear, R.: A ray tracing solution for diffuse interreflection. Comput. Graph. 22(4), 85–92 (1988)

    Article  Google Scholar 

  77. Weidlich, A., Wilkie, A.: Arbitrarily layered micro-facet surfaces. In: Proceedings of the 5th International Conference on Computer Graphics and Interactive Techniques in Australia and Southeast Asia, GRAPHITE’07, pp. 171–178. ACM, New York (2007)

    Chapter  Google Scholar 

  78. Wenger, A., Gardner, A., Tchou, C., Unger, J., Hawkins, T., Debevec, P.: Performance relighting and reflectance transformation with time-multiplexed illumination. ACM Trans. Graph. 24, 756–764 (2005)

    Article  Google Scholar 

  79. Westin, S.H., Arvo, J.R., Torrance, K.E.: Predicting reflectance functions from complex surfaces. In: Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’92, pp. 255–264 (1992)

    Chapter  Google Scholar 

  80. Westin, S.H., Li, H., Torrance, K.E.: A comparison of four BRDF models. Tech. Rep. Technical report PCG-04-02, Program of Computer Graphics, Cornell University (2004)

    Google Scholar 

  81. Westin, S.H., Li, H., Torrance, K.E.: A field guide to BRDF models. Technical report PCG-04-01, Program of Computer Graphics, Cornell University (2004)

    Google Scholar 

  82. Weyrich, T., Matusik, W., Pfister, H., Bickel, B., Donner, C., Tu, C., McAndless, J., Lee, J., Ngan, A., Jensen, H.W., Gross, M.: Analysis of human faces using a measurement-based skin reflectance model. In: SIGGRAPH’06, ACM SIGGRAPH 2006 Papers, pp. 1013–1024. ACM, New York (2006)

    Chapter  Google Scholar 

  83. Wolff, L.B., Boult, T.E.: Constraining object features using a polarization reflectance model. In: Wolff, L.B., Shafer, S.A., Healey, G. (eds.) Radiometry, pp. 167–189. Jones & Bartlett, Boston (1992)

    Google Scholar 

  84. Wong, T.T., Heng, P.A., Or, S.H., Ng, W.Y.: Image-based rendering with controllable illumination. In: Dorsey, J., Slusallek, P. (eds.) Rendering Techniques’97 (Proceedings of the Eighth Eurographics Workshop on Rendering), pp. 13–22. Springer, New York (1997)

    Google Scholar 

  85. Wu, H., Dorsey, J., Rushmeier, H.: Physically-based interactive bi-scale material design. ACM Trans. Graph. 30(6), 145:1–145:10 (2011)

    Article  Google Scholar 

  86. Wyszecky, G., Stiles, W.S.: Color Science. Concepts and Methods, Quantitative Data, Formulae, 2nd edn. Wiley, New York (1982)

    Google Scholar 

  87. von Zernike, F.: Beugungstheorie des Schneidenverfahrens und seiner verbesserten form, der Phasenkontrastmethode. Physica 1(7–12), 689–704 (1934)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Haindl, M., Filip, J. (2013). Spatially Varying Bidirectional Reflectance Distribution Functions. In: Visual Texture. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-4902-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4902-6_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4901-9

  • Online ISBN: 978-1-4471-4902-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics