Advertisement

Modelling of Matrix-Reactance Frequency Converters

Chapter
Part of the Power Systems book series (POWSYS)

Abstract

Matrix-reactance frequency converters are very complex devices, with many elements: semiconductor switches such as IGBTs, and passive elements, such as inductors, capacitors, resistors and integrated control circuits. Their operation is also complex. The analysis and modelling of such converters presents significant challenges, due to their discontinuous switching behaviour. Furthermore, given the increasing number of different modulation strategies it is necessary to study their impact in converter operation. In order to achieve the goal power converters must be appropriately modelled in simulation or analytical studies. Hence, it is necessary to create simple models. In this chapter, the averaged state space models of the discussed matrix-reactance frequency converters are described.

References

  1. 1.
    Chen J, Ngo DT (2001) Graphical phasor analysis of three-phase PWM converters. IEEE Trans Power Electron 16(5):659–666CrossRefGoogle Scholar
  2. 2.
    Fedyczak Z (2003) PWM AC voltage transforming circuits (in Polish). Zielona Góra University Press, Zielona GóraGoogle Scholar
  3. 3.
    Fedyczak Z, Szcześniak P (2006) Koncepcja matrycowo-reaktancyjnego przemiennika częstotliwości typu \(\acute{{\rm {C}}}\)uk (in Polish). Przegląd Elektrotechniczny (Electr Rev) 7/8:42–47Google Scholar
  4. 4.
    Fedyczak Z, Szcześniak P (2006) Koncepcja matrycowo-reaktancyjnego przemiennika częstotliwości typu Zeta (in Polish). Wiadomości Elektrotechniczne (Electrotech News) 3:26–29Google Scholar
  5. 5.
    Fedyczak Z, Szcześniak P (2012) Matrix-reactance frequency converters using an low frequency transfer matrix modulation method. Electr Power Syst Res 83(1):91–103CrossRefGoogle Scholar
  6. 6.
    Fedyczak F, Szcześniak P (2009) Modelling and analysis of matrix-reactance frequency converters using voltage source matrix converter and LF transfer matrix modulation method. Przegląd Elektrotechniczny (Electr Rev) 2:125–130Google Scholar
  7. 7.
    Fedyczak Z, Szcześniak P (2007) New matrix-reactance frequency converters-conception description. In: Orłowska-Kowalska T (ed) Power electronics and electrical drives: selected problems. Wrocław Technical University Press, Wrocław, pp 71–84Google Scholar
  8. 8.
    Fedyczak, Z, Szcześniak P (2005) Study of matrix-reactance frequency converter with buck-boost topology. In: Proceedings of power electronics and intelligent control for energy conservation conference, PELINCEC’05, Warsaw, Poland (CD-ROM)Google Scholar
  9. 9.
    Fedyczak Z, Klytta M, Strzelecki R (2001) Three-phase AC/AC semiconductor transformer topologies and applications. In: Proceedings of power electronics devices compatibility conference, PEDC’01, Zielona Góra, Poland, pp 25–38Google Scholar
  10. 10.
    Fedyczak Z, Strzelecki R, Sozański K (2002) Review of three-phase AC/AC semiconductor transformer topologies and applications. In: Proceedings of symposium power electronics electrical drives automation and motion, SPEEDAM’02, Ravello, Italy, pp B.5-19–B.5-24Google Scholar
  11. 11.
    Fedyczak Z, Szcześniak P, Jankowski M (2005) Koncepcja matrycowo-reaktacyjnego przemiennika częstotliwości typu buck-bost (in Polish). Sterowanie w Energoelektronice i Napędzie Elektrycznym, SENE’05, number 1, Łódź, Poland, pp 101–106Google Scholar
  12. 12.
    Fedyczak Z, Szcześniak P, Kaniweski J (2007) Direct PWM AC choppers and frequency converters. In: Korbicz J (ed) Measurements models systems and design. Transport and Communication Publishers, Warsaw, pp 393–424Google Scholar
  13. 13.
    Fedyczak Z, Szcześniak P, Klytta M (2006) Matrix-reactance frequency converter based on buck-boost topology. In: Proceedings of power electronics and motion control conference, EPE-PEMC’06, Portoroz, Slovenia, pp 763–768Google Scholar
  14. 14.
    Fedyczak Z, Szcześniak P, Korotyeyev I (2008) Generation of matrix-reactance frequency converters based on unipolar PWM AC matrix-reactance choppers. In: Proceedings of IEEE power electronics specialists conference, PESC’08, Rhodes, Greece, pp 1821–1827Google Scholar
  15. 15.
    Fedyczak Z, Szcześniak P, Korotyeyev I (2008) New family of matrix-reactance frequency converters based on unipolar PWM AC matrix-reactance choppers. In: Proceedings of power electronics and motion control conference, EPE-PEMC’08, Poznań, Poland, pp 236–243Google Scholar
  16. 16.
    Fedyczak Z, Szcześniak P, Kaniweski J, Tadra G (2009) Implementation of three-phase frequency converters based on PWM AC matrix-reactance chopper with buck-boost topology. In: Proceedings of European conference on power electronics and applications, EPE’09, Barcelona, Spain, pp P1–P10 (CD-ROM)Google Scholar
  17. 17.
    Fedyczak Z, Tadra G, Klytta M (2010) Implementation of the current source matrix converter with space vector modulation. In: Proceedings of power electronics and motion control conference, EPE-PEMC’10, Ohrid, Macedonia (CD-ROM)Google Scholar
  18. 18.
    Gao F, Iravani MR (2007) Dynamic model of a space vector modulated matrix converter. IEEE Trans Power Deliv 22(3):1696–1705CrossRefGoogle Scholar
  19. 19.
    Kanaan HY, Al-Hadad K (2003) A new average modeling and control design applied to a nine-switch matrix converter with input power factor correction. In: Proceedings of EPE’03, Toulouse, France (CD-ROM)Google Scholar
  20. 20.
    Kanaan HY, Al-Hadad K (2002) A comparison between three modeling approaches for computer implementation of high-fixed-switching-frequency power converters operating in a continuous mode. In: Proceedings of Canadian conference on electrical and computer engineering CCECE’02, Winnipeg, Canada, pp 12–15Google Scholar
  21. 21.
    Korotyeyev I, Fedyczak Z (2008) Steady and transient states modelling methods of matrix-reactance frequency converter with buck-boost topology. COMPEL: Int J Comput Math Electr Electron Eng 28(3):626–638CrossRefGoogle Scholar
  22. 22.
    Korotyeyev I, Fedyczak Z, Szcześniak P (2008) Steady and transient state analysis of a matrix-reactance frequency converter based on a boost PWM AC matrix-reactance chopper. In: Proceedings of the international school on nonsinusoidal currents and compensation, ISNCC’08, Łagów, Poland (CD-ROM)Google Scholar
  23. 23.
    Korotyeyev I, Fedyczak Z, Strzelecki R, Sozański KP (2001) An averaged AC models accuracy evaluation of non-isolated matrix-reactance PWM AC line conditioners. In: Proceedings of European conference on power electronics and applications, EPE’01, Graz (CD-ROM)Google Scholar
  24. 24.
    Krein PT, Bentaman J, Bass RM, Lesieutre BC (1990) On the use of averaging for the analysis of power electronic systems. IEEE Trans Power Electron 5(2):182–190Google Scholar
  25. 25.
    Kwon WH, Cho GH (1993) Analyses of static and dynamic characteristics of practical step-up nine-switch convertor. IEE Proc-B 140(2):139–145Google Scholar
  26. 26.
    Kwon WH, Cho GH (1991) Analysis of non-ideal step down matrix converter based on circuit DQ transformation. In: Proceedings of power electronics specialists conference, PESC’91, Cambridge, US, pp 825–829Google Scholar
  27. 27.
    Middlebrook RD, \(\acute{{\rm {C}}}\)uk S (1976) A general unified approach to modelling switching-converter power stages. In: Proceedings of power electronics specialists conference, PESC’76, Cleveland, US, pp 73–86Google Scholar
  28. 28.
    Rim CT, Hu DY, Cho GH (1990) Transformers as equivalent circuits for switches: general proofs and D-Q transformation-based analyses. IEEE Trans Ind Appl 26(4):777–785CrossRefGoogle Scholar
  29. 29.
    Rim CT (2011) Unified general phasor transformation for AC converters. IEEE Trans Power Electron 26(9):2465–2475CrossRefGoogle Scholar
  30. 30.
    Szcześniak P (2009) Analysis and testing matrix-reactance frequency converters, PhD thesis (in Polish), University of Zielona Góra, Zielona GóraGoogle Scholar
  31. 31.
    Szcześniak P (2007) Basic properties comparative study of matrix-reactance frequency converter based on buck-boost topology with Venturini control strategies. In: Proceedings of compatibility in power electronics, CPE’07, Gdańsk, Poland (CD-ROM)Google Scholar
  32. 32.
    Szcześniak P (2010) Modele matematyczne trójfazowych przemienników częstotliwości prądu przemiennego bazujących na topologii sterownika matrycowo-reaktancyjnego typu buck-boost (in Polish). Przegląd Elektrotechniczny (Electr Rev) 2:384–389Google Scholar
  33. 33.
    Szcześniak P, Fedyczak Z, Klytta M (2008) Modelling and analysis of a matrix-reactance frequency converter based on buck-boost topology by DQ0 transformation. In: Proceedings of power electronics and motion control conference, EPE-PEMC’08, Poznań, Poland, pp 165–172Google Scholar
  34. 34.
    Szcześniak P, Fedyczak Z, Tadra G (2011) Modeling of the matrix-reactance frequency converters using SVM method (in Polish). In: Proceedings of Sterowanie w Energoelektronice i Napędzie Elektrycznym, SENE 2011, Łódź, Poland (CD-ROM)Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Institute of Electrical EngineeringUniversity of Zielona GóraZielona GóraPoland

Personalised recommendations