Skip to main content

Mechanisms of Cardiac Arrhythmia

  • Chapter
  • First Online:
Electrical Diseases of the Heart

Abstract

A cardiac arrhythmia simply defined is a variation from the normal heart rate and/or rhythm that is not physiologically justified. Cardiac arrhythmias are associated with increased morbidity and mortality. Treatment is often based on the underlying cause. Recent years have witnessed important advances in our understanding of the electrophysiologic mechanisms underlying the development of a wide variety of cardiac arrhythmias. Progress relative to our mechanistic understanding of these phenomena has been fueled by advances in our understanding of the genetic basis and genetic predisposition to electrical dysfunction of the heart. The mechanisms responsible for cardiac arrhythmias are generally divided into two broad categories: (1) enhanced or abnormal impulse formation (i.e., focal activity) and (2) conduction disturbances (i.e., reentry). Often these mechanisms act in concert to generate arrhythmias. An understanding of these arrhythmogenic mechanisms is important to providing patient- and mechanism-specific therapy. This chapter provides the fundamentals of our current understanding of the mechanisms underlying the development of cardiac arrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maltsev VA, Vinogradova TM, Lakatta EG. The emergence of a general theory of the initiation and strength of the heartbeat. J Pharmacol Sci. 2006;100:338–69.

    Article  PubMed  CAS  Google Scholar 

  2. Lakatta EG. A paradigm shift for the heart’s pacemaker. Heart Rhythm. 2010;7:559–64.

    Article  PubMed  Google Scholar 

  3. DiFrancesco D. The pacemaker current if plays an important role in regulating SA node pacemaker activity. Cardiovasc Res. 1995;30:307–8.

    PubMed  CAS  Google Scholar 

  4. Huser J, Blatter LA, Lipsius SL. Intracellular Ca2+ release contributes to automaticity in cat atrial pacemaker cells. J Physiol. 2000;524(Pt 2):415–22.

    Article  PubMed  CAS  Google Scholar 

  5. Levy MN. Sympathetic-parasympathetic interactions in the heart. Circ Res. 1971;29:437–45.

    Article  PubMed  CAS  Google Scholar 

  6. Tan AY, Zhou S, Ogawa M, Song J, Chu M, Li H, et al. Neural mechanisms of paroxysmal atrial fibrilla­tion and paroxysmal atrial tachycardia in ambulatory canines. Circulation. 2008;118:916–25.

    Article  PubMed  Google Scholar 

  7. Ogawa M, Zhou S, Tan AY, Song J, Gholmieh G, Fishbein MC, et al. Left stellate ganglion and vagal nerve activity and cardiac arrhythmias in ambulatory dogs with pacing-induced congestive heart failure. J Am Coll Cardiol. 2007;50:335–43.

    Article  PubMed  Google Scholar 

  8. Schulze-Bahr E, Neu A, Friederich P, Kaupp UB, Breithardt G, Pongs O, et al. Pacemaker channel dysfunction in a patient with sinus node disease. J Clin Invest. 2003;111:1537–45.

    PubMed  CAS  Google Scholar 

  9. Nof E, Luria D, Brass D, Marek D, Lahat H, Reznik-Wolf H, et al. Point mutation in the HCN4 cardiac ion channel pore affecting synthesis, trafficking, and functional expression is associated with familial asymptomatic sinus bradycardia. Circulation. 2007;116:463–70.

    Article  PubMed  CAS  Google Scholar 

  10. Zicha S, Fernandez-Velasco M, Lonardo G, L’Heureux N, Nattel S. Sinus node dysfunction and hyperpolarization-activated (HCN) channel subunit remodeling in a canine heart failure model. Cardiovasc Res. 2005;66:472–81.

    Article  PubMed  CAS  Google Scholar 

  11. Laish-Farkash A, Marek D, Brass D, Pras E, Dascal N, Arad M, et al. A novel mutation in the HCN4 gene causes familial sinus bradycardia in two unrelated Moroccan families. Heart Rhythm. 2008;5S:S275. Abstract.

    Google Scholar 

  12. Laish-Farkash A, Glikson M, Brass D, Marek-Yagel D, Pras E, Dascal N, et al. A novel mutation in the HCN4 gene causes symptomatic sinus bradycardia in Moroccan Jews. J Cardiovasc Electrophysiol. 2010;12:1365–72.

    Article  Google Scholar 

  13. Nof E, Antzelevitch C, Glickson M. The contribution of HCN4 to normal sinus nose function in humans and animal models. Pacing Clin Electrophysiol. 2010;33:100–6.

    Article  PubMed  Google Scholar 

  14. Wit AL, Rosen MR. Afterdepolarizations and triggered activity: distinction from automaticity as an arrhythmogenic mechanism. In: Fozzard HA et al., editors. The heart and cardiovascular system. New York: Raven Press; 1992. p. 2113–64.

    Google Scholar 

  15. Zhang L, Benson DW, Tristani-Firouzi M, Ptacek LJ, Tawil R, Schwartz PJ, et al. Electrocardiographic features in Andersen-Tawil syndrome patients with KCNJ2 mutations: characteristic T-U-wave patterns predict the KCNJ2 genotype. Circulation. 2005;111:2720–6.

    Article  PubMed  Google Scholar 

  16. Tsuboi M, Antzelevitch C. Cellular basis for electrocardiographic and arrhythmic manifestations of Andersen-Tawil syndrome (LQT7). Heart Rhythm. 2006;3:328–35.

    Article  PubMed  Google Scholar 

  17. Tristani-Firouzi M. Andersen-Tawil syndrome: an ever-expanding phenotype? Heart Rhythm. 2006;3:1351–2.

    Article  PubMed  Google Scholar 

  18. Tristani-Firouzi M, Etheridge SP. Kir 2.1 channelopathies: the Andersen-Tawil syndrome. Pflugers Arch. 2010;460:289–94.

    Article  PubMed  CAS  Google Scholar 

  19. Tristani-Firouzi M, Jensen JL, Donaldson MR, Sansone V, Meola G, Hahn A, et al. Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J Clin Invest. 2002;110:381–8.

    PubMed  CAS  Google Scholar 

  20. Vassalle M. The relationship among cardiac pacemakers. Overdrive suppression. Circ Res. 1977;41:269–77.

    Article  PubMed  CAS  Google Scholar 

  21. Gadsby DC, Cranefield PF. Electrogenic sodium extrusion in cardiac Purkinje fibers. J Gen Physiol. 1979;73:819–37.

    Article  PubMed  CAS  Google Scholar 

  22. Jalife J, Moe GK. A biological model of parasystole. Am J Cardiol. 1979;43:761–72.

    Article  PubMed  CAS  Google Scholar 

  23. Jalife J, Antzelevitch C, Moe GK. The case for modulated parasystole. Pacing Clin Electrophysiol. 1982;5:911–26.

    PubMed  CAS  Google Scholar 

  24. Nau GJ, Aldariz AE, Acunzo RS, Halpern MS, Davidenko JM, Elizari MV, et al. Modulation of parasystolic activity by nonparasystolic beats. Circulation. 1982;66:462–9.

    Article  PubMed  CAS  Google Scholar 

  25. Antzelevitch C, Bernstein MJ, Feldman HN, Moe GK. Parasystole, reentry, and tachycardia: a canine preparation of cardiac arrhythmias occurring across inexcitable segments of tissue. Circulation. 1983;68:1101–15.

    Article  PubMed  CAS  Google Scholar 

  26. Jalife J, Moe GK. Effect of electrotonic potentials on pacemaker activity of canine Purkinje fibers in relation to parasystole. Circ Res. 1976;39:801–8.

    Article  PubMed  CAS  Google Scholar 

  27. Burashnikov A, Antzelevitch C. Late-phase 3 EAD. A unique mechanism contributing to initiation of atrial fibrillation. Pacing Clin Electrophysiol. 2006;29:290–5.

    Article  PubMed  Google Scholar 

  28. Burashnikov A, Antzelevitch C. Reinduction of atrial fibrillation immediately after termination of the arrhythmia is mediated by late phase 3 early afterdepolarization-induced triggered activity. Circulation. 2003;107:2355–60.

    Article  PubMed  Google Scholar 

  29. Sicouri S, Antzelevitch C. Afterdepolarizations and triggered activity develop in a select population of cells (M cells) in canine ventricular myocardium: the effects of acetylstrophanthidin and Bay K 8644. Pacing Clin Electrophysiol. 1991;14:1714–20.

    Article  PubMed  CAS  Google Scholar 

  30. Roden DM. Drug-induced prolongation of the QT interval. N Engl J Med. 2004;350:1013–22.

    Article  PubMed  CAS  Google Scholar 

  31. Roden DM. Long QT, syndrome: reduced repolarization reserve and the genetic link. J Intern Med. 2006;259:59–69.

    Article  PubMed  CAS  Google Scholar 

  32. Priori SG, Corr PB. Mechanisms underlying early and delayed afterdepolarizations induced by catecholamines. Am J Physiol. 1990;258:H1796–805.

    PubMed  CAS  Google Scholar 

  33. Burashnikov A, Antzelevitch C. Acceleration-induced action potential prolongation and early afterdepolarizations. J Cardiovasc Electrophysiol. 1998;9:934–48.

    Article  PubMed  CAS  Google Scholar 

  34. Liu DW, Antzelevitch C. Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. A weaker IKs contributes to the longer action potential of the M cell. Circ Res. 1995;76:351–65.

    Article  PubMed  CAS  Google Scholar 

  35. Zygmunt AC, Eddlestone GT, Thomas GP, Nesterenko VV, Antzelevitch C. Larger late sodium conductance in M cells contributes to electrical heterogeneity in canine ventricle. Am J Physiol. 2001;281:H689–97.

    CAS  Google Scholar 

  36. Burashnikov A, Antzelevitch C. Prominent IKs in epicardium and endocardium contributes to development of transmural dispersion of repolarization but protects against development of early afterdepolarizations. J Cardiovasc Electrophysiol. 2002;13:172–7.

    Article  PubMed  Google Scholar 

  37. Aiba T, Tomaselli GF. Electrical remodeling in the failing heart. Curr Opin Cardiol. 2010;25:29–36.

    Article  PubMed  Google Scholar 

  38. Ferrier GR, Saunders JH, Mendez C. A cellular mechanism for the generation of ventricular arrhythmias by acetylstrophanthidin. Circ Res. 1973;32:600–9.

    Article  PubMed  CAS  Google Scholar 

  39. Rosen MR, Gelband H, Merker C, Hoffman BF. Mechanisms of digitalis toxicity. Effects of ouabain on phase four of canine Purkinje fiber transmembrane potentials. Circulation. 1973;47:681–9.

    Article  PubMed  CAS  Google Scholar 

  40. Saunders JH, Ferrier GR, Moe GK. Conduction block associated with transient depolarizations induced by acetylstrophanthidin in isolated canine Purkinje fibers. Circ Res. 1973;32:610–7.

    Article  PubMed  CAS  Google Scholar 

  41. Rozanski GJ, Lipsius SL. Electrophysiology of functional subsidiary pacemakers in canine right atrium. Am J Physiol. 1985;249:H594–603.

    PubMed  CAS  Google Scholar 

  42. Wit AL, Cranefield PF. Triggered and automatic activity in the canine coronary sinus. Circ Res. 1977;41:435–45.

    Article  Google Scholar 

  43. Aronson RS. Afterpotentials and triggered activity in hypertrophied myocardium from rats with renal-hypertension. Circ Res. 1981;48:720–7.

    Article  PubMed  CAS  Google Scholar 

  44. Vermeulen JT, McGuire MA, Opthof T, Coronel R, de Bakker JM, Klopping C, et al. Triggered activity and automaticity in ventricular trabeculae of failing human and rabbit hearts. Cardiovasc Res. 1994;28:1547–54.

    Article  PubMed  CAS  Google Scholar 

  45. Lazzara R, El-Sherif N, Scherlag BJ. Electrophysiological properties of canine Purkinje cells in one-day-old myocardial infarction. Circ Res. 1973;33:722–34.

    Article  PubMed  CAS  Google Scholar 

  46. Hoyer K, Song Y, Wang D, Phan D, Balser J, Ingwall JS, et al. Reducing the late sodium current improves cardiac function during sodium pump inhibition by ouabain. J Pharmacol Exp Ther. 2011;337:513–23.

    Article  PubMed  CAS  Google Scholar 

  47. Yao L, Fan P, Jiang Z, Viatchenko-Karpinski S, Wu Y, Kornyeyev D, et al. Nav1.5-dependent persistent Na+  influx activates CaMKII in rat ventricular myocytes and N1325S mice. Am J Physiol Cell Physiol. 2011;301:C577–86.

    Article  PubMed  CAS  Google Scholar 

  48. Priori SG, Napolitano C, Tiso N, Memmi M, Vignati G, Bloise R, et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation. 2001;103:196–200.

    Article  PubMed  CAS  Google Scholar 

  49. Wehrens XH, Lehnart SE, Reiken SR, Deng SX, Vest JA, Cervantes D, et al. Protection from cardiac arrhythmia through ryanodine receptor-stabilizing protein calstabin2. Science. 2004;304:292–6.

    Article  PubMed  CAS  Google Scholar 

  50. Nam GB, Burashnikov A, Antzelevitch C. Cellular mechanisms underlying the development of catecholaminergic ventricular tachycardia. Circulation. 2005;111:2727–33.

    Article  PubMed  Google Scholar 

  51. Tomaselli GF, Zipes DP. What causes sudden death in heart failure? Circ Res. 2004;95:754–63.

    Article  PubMed  CAS  Google Scholar 

  52. Watanabe I, Okumura Y, Ohkubo K, Kawauchi K, Takagi Y, Sugimura H, et al. Steady-state and ­nonsteady-state action potentials in fibrillating canine atrium: alternans of action potential and late phase 3 early afterdepolarization as a precursor of atrial fibrillation. Heart Rhythm. 2005;2:S259. Abstract.

    Article  Google Scholar 

  53. Patterson E, Po SS, Scherlag BJ, Lazzara R. Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation. Heart Rhythm. 2005;2:624–31.

    Article  PubMed  Google Scholar 

  54. Patterson E, Jackman WM, Beckman KJ, Lazzara R, Lockwood D, Scherlag BJ, et al. Spontaneous pulmonary vein firing in man: relationship to tachycardia-pause early afterdepolarizations and triggered arrhythmia in canine pulmonary veins in vitro. J Cardiovasc Electrophysiol. 2007;18:1067–75.

    Article  PubMed  Google Scholar 

  55. Ogawa M, Morita N, Tang L, Karagueuzian HS, Weiss JN, Lin SF, et al. Mechanisms of recurrent ventricular fibrillation in a rabbit model of pacing-induced heart failure. Heart Rhythm. 2009;6:784–92.

    Article  PubMed  Google Scholar 

  56. Schmitt FO, Erlanger J. Directional differences in the conduction of the impulse through heart muscle and their possible relation to extrasystolic and fibrillary contractions. Am J Physiol. 1928;87:326–47.

    Google Scholar 

  57. Mayer AG. Rhythmical pulsations is scyphomedusae. Publication 47 of the Carnegie Institute. 1906; p. 1–62.

    Google Scholar 

  58. Mines GR. On circulating excitations in heart muscles and their possible relation to tachycardia and fibrillation. Trans R Soc Can. 1914;8:43–52.

    Google Scholar 

  59. Mines GR. On dynamic equilibrium in the heart. J Physiol (Lond). 1913;46:350–83.

    Google Scholar 

  60. Garrey WE. The nature of fibrillatory construction of the heart – its relation to tissue mass and form. Am J Physiol. 1914;33:397–414.

    Google Scholar 

  61. Allessie MA, Bonke FIM, Schopman JG. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. Circ Res. 1973;33:54–62.

    Article  PubMed  CAS  Google Scholar 

  62. Allessie MA, Bonke FIM, Schopman JG. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The “leading circle” concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circ Res. 1977;41:9–18.

    Article  PubMed  CAS  Google Scholar 

  63. Weiner N, Rosenblueth A. The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch Inst Cardiol Mex. 1946;16:205–65.

    Google Scholar 

  64. Davidenko JM, Kent PF, Chialvo DR, Michaels DC, Jalife J. Sustained vortex-like waves in normal ­isolated ventricular muscle. Proc Natl Acad Sci USA. 1990;87:8785–9.

    Article  PubMed  CAS  Google Scholar 

  65. Pertsov AM, Davidenko JM, Salomonsz R, Baxter WT, Jalife J. Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle. Circ Res. 1993;72:631–50.

    Article  PubMed  CAS  Google Scholar 

  66. Winfree AT. Oscillatory glycolysis in yeast: the pattern of phase resetting by oxygen. Arch Biochem Biophys. 1972;149:388–401.

    Article  CAS  Google Scholar 

  67. Antzelevitch C, Yan GX, Shimizu W, Burashnikov A. Electrical heterogeneity, the ECG, and cardiac arrhythmias. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology: from cell to bedside. 3rd ed. Philadelphia: W.B. Saunders Co; 1999. p. 222–38.

    Google Scholar 

  68. Pertsov AM, Jalife J. Three-dimensional vortex-like reentry. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology: from cell to bedside. 2nd ed. Philadelphia: W.B. Saunders; 1995. p. 403–10.

    Google Scholar 

  69. Garfinkel A, Qu Z. Nonlinear dynamics of excitation and propagation in cardiac muscle. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology: from cell to bedside. 3rd ed. Philadelphia: W.B. Saunders; 1999. p. 315–20.

    Google Scholar 

  70. Lee MH, Lin SF, Ohara T, Omichi C, Okuyama Y, Chudin E, et al. Effects of diacetyl monoxime and cytochalasin D on ventricular fibrillation in swine right ventricles. Am J Physiol Heart Circ Physiol. 2001;280:H2689–96.

    PubMed  CAS  Google Scholar 

  71. Gray RA, Jalife J, Panfilov AV, Baxter WT, Cabo C, Davidenko JM, et al. Mechanisms of cardiac fibrillation. Science. 1995;270:1222–3.

    Article  PubMed  CAS  Google Scholar 

  72. Weiss JN, Garfinkel A, Karagueuzian HS, Qu Z, Chen PS. Chaos and the transition to ventricular fibrillation: a new approach to antiarrhythmic drug evaluation. Circulation. 1999;99:2819–26.

    Article  PubMed  CAS  Google Scholar 

  73. El-Sherif N, Smith RA, Evans K. Canine ventricular arrhythmias in the late myocardial infarction period. 8. Epicardial mapping of reentrant circuits. Circ Res. 1981;49:255–65.

    Article  PubMed  CAS  Google Scholar 

  74. Valderrabano M, Kim YH, Yashima M, Wu TJ, Karagueuzian HS, Chen PS. Obstacle-induced transition from ventricular fibrillation to tachycardia in isolated swine right ventricles: insights into the transition dynamics and implications for the critical mass. J Am Coll Cardiol. 2000;36:2000–8.

    Article  PubMed  CAS  Google Scholar 

  75. Chen PS, Wolf PD, Dixon EG, Danieley ND, Frazier DW, Smith WM, et al. Mechanism of ventricular vulnerability to single premature stimuli in open-chest dogs. Circ Res. 1988;62:1191–209.

    Article  PubMed  CAS  Google Scholar 

  76. Moe GK, Rheinboldt WC, Abildskov JA. A computer model of atrial fibrillation. Am Heart J. 1964;67:200–20.

    Article  PubMed  CAS  Google Scholar 

  77. Allessie MA, Lammers WJEP, Bonke FIM, Hollen J. Experimental evaluation of Moe’s multiple wavelet hypothesis of atrial fibrillation. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology and arrhythmias. Orlando: Grune & Stratton; 1985. p. 265–76.

    Google Scholar 

  78. Pogwizd SM, Corr PB. Electrophysiologic mechanisms underlying arrhythmias due to reperfusion is ischemic myocardium. Circulation. 1987;76:404–26.

    Article  PubMed  CAS  Google Scholar 

  79. Wang Z, Page P, Nattel S. Mechanism of flecainide’s antiarrhythmic action in experimental atrial fibrillation. Circ Res. 1992;71:271–87.

    Article  PubMed  CAS  Google Scholar 

  80. Ikeda T, Yashima M, Uchida T, Hough D, Fishbein MC, Mandel WJ, et al. Attachment of meandering reentrant wave fronts to anatomic obstacles in the atrium. Role of the obstacle size. Circ Res. 1997;81:753–64.

    Article  PubMed  CAS  Google Scholar 

  81. Gray RA, Pertsov AM, Jalife J. Incomplete reentry and epicardial breakthrough patterns during atrial fibrillation in the sheep heart. Circulation. 1996;94:2649–61.

    Article  PubMed  CAS  Google Scholar 

  82. Zaitsev AV, Berenfeld O, Mironov SF, Jalife J, Pertsov AM. Distribution of excitation frequencies on the epicardial and endocardial surfaces of fibrillating ventricular wall of the sheep heart. Circ Res. 2000;86:408–17.

    Article  PubMed  CAS  Google Scholar 

  83. Hirose M, Carlson MD, Laurita KR. Cellular mechanisms of vagally mediated atrial tachyarrhythmia in isolated arterially perfused canine right atria. J Cardiovasc Electrophysiol. 2002;13:918–26.

    Article  PubMed  Google Scholar 

  84. de Groot NM, Houben RP, Smeets JL, Boersma E, Schotten U, Schalij MJ, et al. Electropathological substrate of longstanding persistent atrial fibrillation in patients with structural heart disease: epicardial breakthrough. Circulation. 2010;122:1674–82.

    Article  PubMed  Google Scholar 

  85. Verheule S, Tuyls E, van Hunnik A, Kuiper M, Schotten U, Allessie M. Fibrillatory conduction in the atrial free walls of goats in persistent and permanent atrial fibrillation. Circ Arrhythm Electrophysiol. 2010;3:590–9.

    Article  PubMed  Google Scholar 

  86. Schuessler RB, Grayson TM, Bromberg BI, Cox JL, Boineau JP. Cholinergically mediated tachyarrhythmias induced by a single extrastimulus in the isolated canine right atrium. Circ Res. 1992;71:1254–67.

    Article  PubMed  CAS  Google Scholar 

  87. Mandapati R, Skanes A, Chen J, Berenfeld O, Jalife J. Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart. Circulation. 2000;101:194–9.

    Article  PubMed  CAS  Google Scholar 

  88. Samie FH, Berenfeld O, Anumonwo J, Mironov SF, Udassi S, Beaumont J, et al. Rectification of the background potassium current: a determinant of rotor dynamics in ventricular fibrillation. Circ Res. 2001;89:1216–23.

    Article  PubMed  CAS  Google Scholar 

  89. Bui HM, Khrestian CM, Ryu K, Sahadevan J, Waldo AL. Fixed intercaval block in the setting of atrial fibrillation promotes the development of atrial flutter. Heart Rhythm. 2008;5:1745–52.

    Article  PubMed  Google Scholar 

  90. Nair K, Umapathy K, Farid T, Masse S, Mueller E, Sivanandan RV, et al. Intramural activation during early human ventricular fibrillation. Circ Arrhythm Electrophysiol. 2011;4:692–703.

    Article  PubMed  Google Scholar 

  91. Scherf D, Romano FJ, Terranova R. Experimental studies on auricular flutter and auricular fibrillation. Am Heart J. 1948;36:241–51.

    Article  PubMed  CAS  Google Scholar 

  92. Prinzmetal M, Rakata L, Borduas JL, Flamm E, Goldman L. The nature of spontaneous auricular fibrillation in man. JAMA. 1955;157:1175–82.

    Article  CAS  Google Scholar 

  93. Jalife J. Deja vu in the theories of atrial fibrillation dynamics. Cardiovasc Res. 2011;89:766–75.

    Article  PubMed  CAS  Google Scholar 

  94. Skanes AC, Mandapati R, Berenfeld O, Davidenko JM, Jalife J. Spatiotemporal periodicity during atrial fibrillation in the isolated sheep heart [see comments]. Circulation. 1998;98:1236–48.

    Article  PubMed  CAS  Google Scholar 

  95. Kalifa J, Tanaka K, Zaitsev AV, Warren M, Vaidyanathan R, Auerbach D, et al. Mechanisms of wave fractionation at boundaries of high-frequency excitation in the posterior left atrium of the isolated sheep heart during atrial fibrillation. Circulation. 2006;113:626–33.

    Article  PubMed  Google Scholar 

  96. Schuessler RB, Kawamoto T, Hand DE, Mitsuno M, Bromberg BI, Cox JL, et al. Simultaneous epicardial and endocardial activation sequence mapping in the isolated canine right atrium. Circulation. 1993;88:250–63.

    Article  PubMed  CAS  Google Scholar 

  97. Everett TH, Wilson EE, Hulley GS, Olgin JE. Transmural characteristics of atrial fibrillation in canine models of structural and electrical atrial remodeling assessed by simultaneous epicardial and endocardial mapping. Heart Rhythm. 2010;7:506–17.

    Article  PubMed  Google Scholar 

  98. Allessie MA, de Groot NM, Houben RP, Schotten U, Boersma E, Smeets JL, et al. Electropathological substrate of long-standing persistent atrial fibrillation in patients with structural heart disease: longitudinal dissociation. Circ Arrhythm Electrophysiol. 2010;3:606–15.

    Article  PubMed  Google Scholar 

  99. Zhou S, Chang CM, Wu TJ, Miyauchi Y, Okuyama Y, Park AM, et al. Nonreentrant focal activations in pulmonary veins in canine model of sustained atrial fibrillation. Am J Physiol Heart Circ Physiol. 2002;283:H1244–52.

    PubMed  CAS  Google Scholar 

  100. Everett TH, Wilson EE, Foreman S, Olgin JE. Mechanisms of ventricular fibrillation in canine models of congestive heart failure and ischemia assessed by in vivo noncontact mapping. Circulation. 2005;112:1532–41.

    Article  PubMed  Google Scholar 

  101. Li L, Jin Q, Huang J, Cheng KA, Ideker RE. Intramural foci during long duration fibrillation in the pig ventricle. Circ Res. 2008;102:1256–64.

    Article  PubMed  CAS  Google Scholar 

  102. Robichaux RP, Dosdall DJ, Osorio J, Garner NW, Li L, Huang J, et al. Periods of highly synchronous, non-reentrant endocardial activation cycles occur during long-duration ventricular fibrillation. J Cardiovasc Electrophysiol. 2010;21:1266–73.

    Article  PubMed  Google Scholar 

  103. Haissaguerre M, Jais P, Shah DC, Takahashi A, Hocini M, Quiniou G, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339:659–66.

    Article  PubMed  CAS  Google Scholar 

  104. Tabereaux PB, Dosdall DJ, Ideker RE. Mechanisms of VF maintenance: wandering wavelets, mother rotors, or foci. Heart Rhythm. 2009;6:405–15.

    Article  PubMed  Google Scholar 

  105. Wit AL, Cranefield PF, Hoffman BF. Slow conduction and reentry in the ventricular conducting system. II. Single and sustained circus movement in networks of canine and bovine Purkinje fibers. Circ Res. 1972;30:11–22.

    Article  PubMed  CAS  Google Scholar 

  106. Antzelevitch C, Jalife J, Moe GK. Characteristics of reflection as a mechanism of reentrant arrhythmias and its relationship to parasystole. Circulation. 1980;61:182–91.

    Article  PubMed  CAS  Google Scholar 

  107. Antzelevitch C, Moe GK. Electrotonically-mediated delayed conduction and reentry in relation to “slow responses” in mammalian ventricular conducting tissue. Circ Res. 1981;49:1129–39.

    Article  PubMed  CAS  Google Scholar 

  108. Antzelevitch C. Clinical applications of new concepts of parasystole, reflection, and tachycardia. Cardiol Clin. 1983;1:39–50.

    PubMed  CAS  Google Scholar 

  109. Rozanski GJ, Jalife J, Moe GK. Reflected reentry in nonhomogeneous ventricular muscle as a mechanism of cardiac arrhythmias. Circulation. 1984;69:163–73.

    Article  PubMed  CAS  Google Scholar 

  110. Lukas A, Antzelevitch C. Reflected reentry, delayed conduction, and electrotonic inhibition in segmentally depressed atrial tissues. Can J Physiol Pharmacol. 1989;67:757–64.

    Article  PubMed  CAS  Google Scholar 

  111. Davidenko JM, Antzelevitch C. The effects of milrinone on action potential characteristics, conduction, automaticity, and reflected reentry in isolated myocardial fibers. J Cardiovasc Pharmacol. 1985;7:341–9.

    Article  PubMed  CAS  Google Scholar 

  112. Rosenthal JE, Ferrier GR. Contribution of variable entrance and exit block in protected foci to arrhythmogenesis in isolated ventricular tissues. Circulation. 1983;67:1–8.

    Article  PubMed  CAS  Google Scholar 

  113. Antzelevitch C, Lukas A. Reflection and circus movement reentry in isolated atrial and ventricular tissues. In: Dangman KH, Miura DS, editors. Electrophysiology and pharmacology of the heart. A clinical guide. New York: Marcel Dekker; 1991. p. 251–75.

    Google Scholar 

  114. Krishnan SC, Antzelevitch C. Flecainide-induced arrhythmia in canine ventricular epicardium. Phase 2 reentry? Circulation. 1993;87:562–72.

    Article  PubMed  CAS  Google Scholar 

  115. Lukas A, Antzelevitch C. Phase 2 reentry as a mechanism of initiation of circus movement reentry in canine epicardium exposed to simulated ischemia. Cardiovasc Res. 1996;32:593–603.

    PubMed  CAS  Google Scholar 

  116. Di Diego JM, Antzelevitch C. Pinacidil-induced electrical heterogeneity and extrasystolic activity in canine ventricular tissues. Does activation of ATP-regulated potassium current promote phase 2 reentry? Circulation. 1993;88:1177–89.

    Article  PubMed  Google Scholar 

  117. Antzelevitch C, Yan GX. J wave syndromes. Heart Rhythm. 2010;7:549–58.

    Article  PubMed  Google Scholar 

  118. Antzelevitch C. Brugada syndrome. Pacing Clin Electrophysiol. 2006;29:1130–59.

    Article  PubMed  Google Scholar 

  119. Antzelevitch C, Sicouri S, Litovsky SH, Lukas A, Krishnan SC, Di Diego JM, et al. Heterogeneity within the ventricular wall. Electrophysiology and pharmacology of epicardial, endocardial, and M cells. Circ Res. 1991;69:1427–49.

    Article  PubMed  CAS  Google Scholar 

  120. Antzelevitch C, Sicouri S, Lukas A, Di Diego JM, Nesterenko VV, Liu DW, et al. Clinical implications of electrical heterogeneity in the heart: the electrophysiology and pharmacology of epicardial, M, and endocardial cells. In: Podrid PJ, Kowey PR, editors. Cardiac arrhythmia: mechanism, diagnosis and management. Baltimore: William & Wilkins; 1995. p. 88–107.

    Google Scholar 

  121. Liu DW, Gintant GA, Antzelevitch C. Ionic bases for electrophysiological distinctions among epicardial, midmyocardial, and endocardial myocytes from the free wall of the canine left ventricle. Circ Res. 1993;72:671–87.

    Article  PubMed  CAS  Google Scholar 

  122. Zygmunt AC, Goodrow RJ, Antzelevitch C. INaCa contributes to electrical heterogeneity within the canine ventricle. Am J Physiol Heart Circ Physiol. 2000;278:H1671–8.

    PubMed  CAS  Google Scholar 

  123. Litovsky SH, Antzelevitch C. Transient outward current prominent in canine ventricular epicardium but not endocardium. Circ Res. 1988;62:116–26.

    Article  PubMed  CAS  Google Scholar 

  124. Furukawa T, Myerburg RJ, Furukawa N, Bassett AL, Kimura S. Differences in transient outward currents of feline endocardial and epicardial myocytes. Circ Res. 1990;67:1287–91.

    Article  PubMed  CAS  Google Scholar 

  125. Sicouri S, Quist M, Antzelevitch C. Evidence for the presence of M cells in the guinea pig ventricle. J Cardiovasc Electrophysiol. 1996;7:503–11.

    Article  PubMed  CAS  Google Scholar 

  126. Stankovicova T, Szilard M, De Scheerder I, Sipido KR. M cells and transmural heterogeneity of action potential configuration in myocytes from the left ventricular wall of the pig heart. Cardiovasc Res. 2000;45:952–60.

    Article  PubMed  CAS  Google Scholar 

  127. McIntosh MA, Cobbe SM, Smith GL. Heterogeneous changes in action potential and intracellular Ca2+ in left ventricular myocyte sub-types from rabbits with heart failure. Cardiovasc Res. 2000;45:397–409.

    Article  PubMed  CAS  Google Scholar 

  128. Wettwer E, Amos GJ, Posival H, Ravens U. Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin. Circ Res. 1994;75:473–82.

    Article  PubMed  CAS  Google Scholar 

  129. Nabauer M, Beuckelmann DJ, Uberfuhr P, Steinbeck G. Regional differences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle. Circulation. 1996;93:168–77.

    Article  PubMed  CAS  Google Scholar 

  130. Di Diego JM, Sun ZQ, Antzelevitch C. Ito and action potential notch are smaller in left vs. right canine ventricular epicardium. Am J Physiol. 1996;271:H548–61.

    PubMed  Google Scholar 

  131. Volders PG, Sipido KR, Carmeliet E, Spatjens RL, Wellens HJ, Vos MA. Repolarizing K+ currents ITO1 and IKs are larger in right than left canine ventricular midmyocardium. Circulation. 1999;99:206–10.

    Article  PubMed  CAS  Google Scholar 

  132. Takano M, Noma A. Distribution of the isoprenaline-induced chloride current in rabbit heart. Pflugers Arch. 1992;420:223–6.

    Article  PubMed  CAS  Google Scholar 

  133. Zygmunt AC. Intracellular calcium activates chloride current in canine ventricular myocytes. Am J Physiol. 1994;267:H1984–95.

    PubMed  CAS  Google Scholar 

  134. Sicouri S, Antzelevitch C. A subpopulation of cells with unique electrophysiological properties in the deep subepicardium of the canine ventricle. The M cell. Circ Res. 1991;68:1729–41.

    Article  PubMed  CAS  Google Scholar 

  135. Anyukhovsky EP, Sosunov EA, Rosen MR. Regional differences in electrophysiologic properties of epicardium, midmyocardium and endocardium: in vitro and in vivo correlations. Circulation. 1996;94:1981–8.

    Article  PubMed  CAS  Google Scholar 

  136. Brahmajothi MV, Morales MJ, Rasmusson RL, Campbell DL, Strauss HC. Heterogeneity in K+  channel transcript expression detected in isolated ferret cardiac myocytes. Pacing Clin Electrophysiol. 1997;20:388–96.

    Article  PubMed  CAS  Google Scholar 

  137. Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome: a multicenter report. J Am Coll Cardiol. 1992;20:1391–6.

    Article  PubMed  CAS  Google Scholar 

  138. Chen Q, Kirsch GE, Zhang D, Brugada R, Brugada J, Brugada P, et al. Genetic basis and molecular mechanisms for idiopathic ventricular fibrilla­tion. Nature. 1998;392:293–6.

    Article  PubMed  CAS  Google Scholar 

  139. Schulze-Bahr E, Eckardt L, Breithardt G, Seidl K, Wichter T, Wolpert C, et al. Sodium channel gene (SCN5A) mutations in 44 index patients with Brugada syndrome: different incidences in familial and sporadic disease. Hum Mutat. 2003;21:651–2.

    Article  PubMed  CAS  Google Scholar 

  140. Kapplinger JD, Wilde AAM, Antzelevitch C, Benito B, Berthet M, Brugada J, et al. A worldwide compendium of putative Brugada syndrome associated mutations in the SCN5A encoded cardiac sodium channel. Heart Rhythm. 2009;6:S392. Abstract.

    Article  Google Scholar 

  141. Antzelevitch C, Pollevick GD, Cordeiro JM, Casis O, Sanguinetti MC, Aizawa Y, et al. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation. 2007;115:442–9.

    Article  PubMed  Google Scholar 

  142. Burashnikov E, Pfeiffer R, Barajas-Martinez H, Delpon E, Hu D, Desai M, et al. Mutations in the cardiac L-type calcium channel associated J wave syndrome and sudden cardiac death. Heart Rhythm. 2010;7:1872–82.

    Article  PubMed  Google Scholar 

  143. London B, Michalec M, Mehdi H, Zhu X, Kerchner L, Sanyal S, et al. Mutation in glycerol-3-­phosphate dehydrogenase 1 like gene (GPD1-L) decreases cardiac Na+  current and causes inherited arrhythmias. Circulation. 2007;116:2260–8.

    Article  PubMed  CAS  Google Scholar 

  144. Watanabe H, Koopmann TT, Le Scouarnec S, Yang T, Ingram CR, Schott JJ, et al. Sodium channel b1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. J Clin Invest. 2008;118:2260–8.

    PubMed  CAS  Google Scholar 

  145. Delpón E, Cordeiro JM, Núñez L, Thomsen PEB, Guerchicoff A, Pollevick GD, et al. Functional effects of KCNE3 mutation and its role in the development of Brugada syndrome. Circ Arrhythm Electrophysiol. 2008;1:209–18.

    Article  PubMed  CAS  Google Scholar 

  146. Medeiros-Domingo A, Tan BH, Crotti L, Tester DJ, Eckhardt L, Cuoretti A, et al. Gain-of-function mutation S422L in the KCNJ8-encoded cardiac K(ATP) channel Kir6.1 as a pathogenic substrate for J-wave syndromes. Heart Rhythm. 2010;7:1466–71.

    Article  PubMed  Google Scholar 

  147. Giudicessi JR, Ye D, Tester DJ, Crotti L, Mugione A, Nesterenko VV, et al. Transient outward current (Ito) gain-of-function mutations in the KCND3-encoded Kv4.3 potassium channel and Brugada syndrome. Heart Rhythm. 2011;8:1024–32.

    Article  PubMed  Google Scholar 

  148. Cranefield PF, Hoffman BF. Conduction of the cardiac impulse. II. Summation and inhibition. Circ Res. 1971;28:220–33.

    Article  PubMed  CAS  Google Scholar 

  149. Kattygnarath D, Maugenre S, Neyroud N, Balse E, Ichai C, Denjoy I, et al. MOG1: a new susceptibility gene for Brugada syndrome. Circ Cardiovasc Genet. 2011;4:261–8.

    Article  PubMed  CAS  Google Scholar 

  150. Fish JM, Antzelevitch C. Role of sodium and calcium channel block in unmasking the Brugada syndrome. Heart Rhythm. 2004;1:210–7.

    Article  PubMed  Google Scholar 

  151. Yan GX, Antzelevitch C. Cellular basis for the Brugada syndrome and other mechanisms of arrhythmogenesis associated with ST segment elevation. Circulation. 1999;100:1660–6.

    Article  PubMed  CAS  Google Scholar 

  152. Antzelevitch C, Shimizu W, Yan GX. Electrical heterogeneity and the development of arrhythmias. In: Olsson SB, Yuan S, Amlie JP, editors. Dispersion of ventricular repolarization: state of the art. Armonk: Futura Publishing Company, Inc; 2000. p. 3–21.

    Google Scholar 

  153. Yan GX, Lankipalli RS, Burke JF, Musco S, Kowey PR. Ventricular repolarization components on the electrocardiogram: cellular basis and clinical significance. J Am Coll Cardiol. 2003;42:401–9.

    Article  PubMed  Google Scholar 

  154. Shimizu W, Antzelevitch C, Suyama K, Kurita T, Taguchi A, Aihara N, et al. Effect of sodium channel blockers on ST segment, QRS duration, and corrected QT interval in patients with Brugada syndrome. J Cardiovasc Electrophysiol. 2000;11:1320–9.

    Article  PubMed  CAS  Google Scholar 

  155. Brugada R, Brugada J, Antzelevitch C, Kirsch GE, Potenza D, Towbin JA, et al. Sodium channel blockers identify risk for sudden death in patients with ST-segment elevation and right bundle branch block but structurally normal hearts. Circulation. 2000;101:510–5.

    Article  PubMed  CAS  Google Scholar 

  156. Morita H, Morita ST, Nagase S, Banba K, Nishii N, Tani Y, et al. Ventricular arrhythmia induced by sodium channel blocker in patients with Brugada syndrome. J Am Coll Cardiol. 2003;42:1624–31.

    Article  PubMed  CAS  Google Scholar 

  157. Gussak I, Antzelevitch C, Bjerregaard P, Towbin JA, Chaitman BR. The Brugada syndrome: clinical, electrophysiologic and genetic aspects. J Am Coll Cardiol. 1999;33:5–15.

    Article  PubMed  CAS  Google Scholar 

  158. Antzelevitch C. The Brugada syndrome: ionic basis and arrhythmia mechanisms. J Cardiovasc Electrophysiol. 2001;12:268–72.

    Article  PubMed  CAS  Google Scholar 

  159. Tsuchiya T, Ashikaga K, Honda T, Arita M. Prevention of ventricular fibrillation by cilostazol, an oral phosphodiesterase inhibitor, in a patient with Brugada syndrome. J Cardiovasc Electrophysiol. 2002;13:698–701.

    Article  PubMed  Google Scholar 

  160. Alings M, Dekker L, Sadee A, Wilde A. Quinidine induced electrocardiographic normalization in two patients with Brugada syndrome. Pacing Clin Electrophysiol. 2001;24:1420–2.

    Article  PubMed  CAS  Google Scholar 

  161. Shimizu W, Matsuo K, Takagi M, Tanabe Y, Aiba T, Taguchi A, et al. Body surface distribution and response to drugs of ST segment elevation in Brugada syndrome: clinical implication of eighty-seven-lead body surface potential mapping and its application to twelve-lead electrocardiograms. J Cardiovasc Electrophysiol. 2000;11:396–404.

    Article  PubMed  CAS  Google Scholar 

  162. Suzuki H, Torigoe K, Numata O, Yazaki S. Infant case with a malignant form of Brugada syndrome. J Cardiovasc Electrophysiol. 2000;11:1277–80.

    Article  PubMed  CAS  Google Scholar 

  163. Tanaka H, Kinoshita O, Uchikawa S, Kasai H, Nakamura M, Izawa A, et al. Successful prevention of recurrent ventricular fibrillation by intravenous isoproterenol in a patient with Brugada syndrome. Pacing Clin Electrophysiol. 2001;24:1293–4.

    Article  PubMed  CAS  Google Scholar 

  164. Belhassen B, Viskin S, Antzelevitch C. The Brugada syndrome: is an implantable cardioverter defibrillator the only therapeutic option? Pacing Clin Electrophysiol. 2002;25:1634–40.

    Article  PubMed  Google Scholar 

  165. Mok NS, Chan NY, Chi-Suen CA. Successful use of quinidine in treatment of electrical storm in Brugada syndrome. Pacing Clin Electrophysiol. 2004;27:821–3.

    Article  PubMed  Google Scholar 

  166. Haghjoo M, Arya A, Heidari A, Sadr-Ameli MA. Suppression of electrical storm by oral quinidine in a patient with Brugada syndrome. J Cardiovasc Electrophysiol. 2005;16:674.

    Article  PubMed  Google Scholar 

  167. Postema PG, van Dessel PFHM, Kors JA, Linnenbank AC, van Harpen G, van Eck HJ R, et al. Local depolarization abnormalities are the dominant pathophysiologic mechanism for type 1 electrocardiogram in Brugada syndrome: a study of electrocardiograms, vectorcardiograms, and body surface potential maps during ajmaline provocation. J Am Coll Cardiol. 2010;55:789–97.

    Article  PubMed  Google Scholar 

  168. Postema PG, Mosterd A, Hofman N, Alders M, Wilde AA. Sodium channelopathies: do we really understand what’s going on? J Cardiovasc Electrophysiol. 2011;22:590–3.

    Article  PubMed  Google Scholar 

  169. Nademanee K, Veerakul G, Chandanamattha P, Chaothawee L,    Ariyachaipanich A, Jirasirirojana­korn K, et al. Prevention of ventricular fibrillation episodes in Brugada syndrome by catheter ablation over the anterior right ventricular outflow tract epicardium. Circulation. 2011;123:1270–9.

    Article  PubMed  Google Scholar 

  170. Kanter RJ, Pfeiffer R, Hu D, Barajas-Martinez H, Carboni MP, Antzelevitch C. Brugada-like syndrome in infancy presenting with rapid ventricular tachycardia and intraventricular conduction delay. Circulation. 2012;125:14–22.

    Article  PubMed  Google Scholar 

  171. Wilde AA, Postema PG, Di Diego JM, Viskin S, Morita H, Fish JM, et al. The pathophysiological mechanism underlying Brugada syndrome: depolarization versus repolarization. J Mol Cell Cardiol. 2010;49:543–53.

    Article  PubMed  CAS  Google Scholar 

  172. Wasserburger RH, Alt WJ. The normal RS-T segment elevation variant. Am J Cardiol. 1961;8:184–92.

    Article  PubMed  CAS  Google Scholar 

  173. Mehta MC, Jain AC. Early repolarization on scalar electrocardiogram. Am J Med Sci. 1995;309:305–11.

    Article  PubMed  CAS  Google Scholar 

  174. Gussak I, Antzelevitch C. Early repolarization syndrome: clinical characteristics and possible cellular and ionic mechanisms. J Electrocardiol. 2000;33:299–309.

    Article  PubMed  CAS  Google Scholar 

  175. Bjerregaard P, Gussak I, Kotar S, Gessler JE. Recurrent synocope in a patient with prominent J-wave. Am Heart J. 1994;127:1426–30.

    Article  PubMed  CAS  Google Scholar 

  176. Yan GX, Antzelevitch C. Cellular basis for the electrocardiographic J wave. Circulation. 1996;93:372–9.

    Article  PubMed  CAS  Google Scholar 

  177. Geller JC, Reek S, Goette A, Klein HU. Spontaneous episode of polymorphic ventricular tachycardia in a patient with intermittent Brugada syndrome. J Cardiovasc Electrophysiol. 2001;12:1094.

    Article  PubMed  CAS  Google Scholar 

  178. Daimon M, Inagaki M, Morooka S, Fukuzawa S, Sugioka J, Kushida S, et al. Brugada syndrome characterized by the appearance of J waves. Pacing Clin Electrophysiol. 2000;23:405–6.

    Article  PubMed  CAS  Google Scholar 

  179. Kalla H, Yan GX, Marinchak R. Ventricular fibrillation in a patient with prominent J (Osborn) waves and ST segment elevation in the inferior electrocardiographic leads: a Brugada syndrome variant? J Cardiovasc Electrophysiol. 2000;11:95–8.

    Article  PubMed  CAS  Google Scholar 

  180. Komiya N, Imanishi R, Kawano H, Shibata R, Moriya M, Fukae S, et al. Ventricular fibrillation in a patient with prominent J wave in the inferior and lateral electrocardiographic leads after gastrostomy. Pacing Clin Electrophysiol. 2006;29:1022–4.

    Article  PubMed  Google Scholar 

  181. Shinohara T, Takahashi N, Saikawa T, Yoshimatsu H. Characterization of J wave in a patient with idiopathic ventricular fibrillation. Heart Rhythm. 2006;3:1082–4.

    Article  PubMed  Google Scholar 

  182. Riera AR, Ferreira C, Schapachnik E, Sanches PC, Moffa PJ. Brugada syndrome with atypical ECG: downsloping ST-segment elevation in inferior leads. J Electrocardiol. 2004;37:101–4.

    Article  PubMed  Google Scholar 

  183. Shu J, Zhu T, Yang L, Cui C, Yan GX. ST-segment elevation in the early repolarization syndrome, idiopathic ventricular fibrillation, and the Brugada syndrome: cellular and clinical linkage. J Electrocardiol. 2005;38:26–32.

    Article  PubMed  Google Scholar 

  184. Haissaguerre M, Derval N, Sacher F, Jesel L, Deisenhofer I, De Roy L, et al. Sudden cardiac arrest associated with early repolarization. N Engl J Med. 2008;358:2016–23.

    Article  PubMed  CAS  Google Scholar 

  185. Nam GB, Kim YH, Antzelevitch C. Augmentation of J waves and electrical storms in patients with early repolarization. N Engl J Med. 2008;358:2078–9.

    Article  PubMed  CAS  Google Scholar 

  186. Rosso R, Kogan E, Belhassen B, Rozovski U, Scheinman MM, Zeltser D, et al. J-point elevation in survivors of primary ventricular fibrillation and matched control subjects: incidence and clinical significance. J Am Coll Cardiol. 2008;52:1231–8.

    Article  PubMed  Google Scholar 

  187. Tikkanen JT, Anttonen O, Junttila MJ, Aro AL, Kerola T, Rissanen HA, et al. Long-term outcome associated with early repolarization on electrocardiography. N Engl J Med. 2009;361:2529–37.

    Article  PubMed  CAS  Google Scholar 

  188. Sinner MF, Reinhard W, Muller M, Beckmann BM, Martens E, Perz S, et al. Association of early repolarization pattern on ECG with risk of cardiac and all-cause mortality: a population-based prospective cohort study (MONICA/KORA). PLoS Med. 2010;7:e1000314.

    Article  PubMed  Google Scholar 

  189. Noseworthy PA, Tikkanen JT, Porthan K, Oikarinen L, Pietila A, Harald K, et al. The early repolarization pattern in the general population clinical correlates and heritability. J Am Coll Cardiol. 2011;57:2284–9.

    Article  PubMed  Google Scholar 

  190. Tikkanen JT, Junttila MJ, Anttonen O, Aro AL, Luttinen S, Kerola T, et al. Early repolarization: electrocardiographic phenotypes associated with favorable long-term outcome. Circulation. 2011;123:2666–73.

    Article  PubMed  Google Scholar 

  191. Burashnikov A, Antzelevitch C. Evaluation of: [Tikkanen JT et al. Early repolarization: electrocardiographic phenotypes associated with favorable long-term outcome. Circulation. 2011; 123(23):2666–73. doi:10.1161/CIRCULATIONAHA.110.014068]. Faculty of 1000: 2011 July 6; Available at: URL: F1000.com/11746956.

  192. Nam GB, Ko KH, Kim J, Park KM, Rhee KS, Choi KJ, et al. Mode of onset of ventricular fibrillation in patients with early repolarization pattern vs. Brugada syndrome. Eur Heart J. 2010;31:330–9.

    Article  PubMed  Google Scholar 

  193. Haissaguerre M, Chatel S, Sacher F, Weerasooriya R, Probst V, Loussouarn G, et al. Ventricular fibrillation with prominent early repolarization associated with a rare variant of KCNJ8/KATP channel. J Cardiovasc Electrophysiol. 2009;20:93–8.

    Article  PubMed  Google Scholar 

  194. Barajas-Martinez H, Hu D, Ferrer T, Onetti CG, Wu Y, Burashnikov E, et al. Molecular genetic and functional association of Bugada and early repolarization syndromes with S422L missense mutation in KCNJ8. Heart Rhythm. 2012;9:548–55.

    Article  PubMed  Google Scholar 

  195. Watanabe H, Nogami A, Ohkubo K, Kawata H, Hayashi Y, Ishikawa T, et al. Electrocardiographic characteristics and SCN5A mutations in idiopathic ventricular fibrillation associated with early repolarization. Circ Arrhythm Electrophysiol. 2011;4:874–81.

    Article  PubMed  CAS  Google Scholar 

  196. Hu D, Barajas-Martinez H, Terzic A, Borggrefe M, Veltmann C, Schimpf R, et al. Compound mutations in ABCC9 and SCN5A associated with a malignant form of overlap syndrome: Brugada, long QT and early repolarization syndromes. Heart Rhythm. 2011;8(5S):S463. Abstract.

    Google Scholar 

  197. Surawicz B, Macfarlane PW. Inappropriate and confusing electrocardiographic terms: J-wave syndromes and early repolarization. J Am Coll Cardiol. 2011;57:1584–6.

    Article  PubMed  Google Scholar 

  198. Antzelevitch C, Yan GX, Viskin S. Rationale for the use of the terms J-wave syndromes and early repolarization. J Am Coll Cardiol. 2011;57:1587–90.

    Article  PubMed  Google Scholar 

  199. Chockalingam P, Wilde AA. Loss-of-function sodium channel mutations in infancy: a pattern unfolds. Circulation. 2012;125:6–8.

    Article  PubMed  Google Scholar 

  200. Schwartz PJ. The idiopathic long QT syndrome: progress and questions. Am Heart J. 1985;109:399–411.

    Article  PubMed  CAS  Google Scholar 

  201. Moss AJ, Schwartz PJ, Crampton RS, Tzivoni D, Locati EH, MacCluer JW, et al. The long QT syndrome: prospective longitudinal study of 328 families. Circulation. 1991;84:1136–44.

    Article  PubMed  CAS  Google Scholar 

  202. Zipes DP. The long QT interval syndrome. A Rosetta stone for sympathetic related ventricular tachyarrhythmias. Circulation. 1991;84:1414–9.

    Article  PubMed  CAS  Google Scholar 

  203. Plaster NM, Tawil R, Tristani-Firouzi M, Canun S, Bendahhou S, Tsunoda A, et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell. 2001;105:511–9.

    Article  PubMed  CAS  Google Scholar 

  204. Wang Q, Shen J, Splawski I, Atkinson DL, Li ZZ, Robinson JL, et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell. 1995;80:805–11.

    Article  PubMed  CAS  Google Scholar 

  205. Mohler PJ, Schott JJ, Gramolini AO, Dilly KW, Guatimosim S, du Bell WH, et al. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature. 2003;421:634–9.

    Article  PubMed  CAS  Google Scholar 

  206. Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell. 1995;80:795–803.

    Article  PubMed  CAS  Google Scholar 

  207. Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, Van Raay TJ, et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet. 1996;12:17–23.

    Article  PubMed  Google Scholar 

  208. Splawski I, Tristani-Firouzi M, Lehmann MH, Sanguinetti MC, Keating MT. Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Nat Genet. 1997;17:338–40.

    Article  PubMed  CAS  Google Scholar 

  209. Ye B, Tester DJ, Vatta M, Makielski JC, Ackerman MJ. Molecular and functional characterization of novel cav3-encoded caveolin-3 mutations in congenital long QT syndrome [abstract]. Heart Rhythm. 2006;3:S1. Abstract.

    Article  Google Scholar 

  210. Domingo AM, Kaku T, Tester DJ, Torres PI, Itty A, Ye B, et al. Sodium channel ß4 subunit mutation causes congenital long QT syndrome. Heart Rhythm. 2006;3:S34. Abstract.

    Article  Google Scholar 

  211. Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, et al. Cav1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell. 2004;119:19–31.

    Article  PubMed  CAS  Google Scholar 

  212. Yang Y, Yang Y, Liang B, Liu J, Li J, Grunnet M, et al. Identification of a Kir3.4 mutation in congenital long QT syndrome. Am J Hum Genet. 2010;86:872–80.

    Article  PubMed  CAS  Google Scholar 

  213. Bednar MM, Harrigan EP, Anziano RJ, Camm AJ, Ruskin JN. The QT interval. Prog Cardiovasc Dis. 2001;43:1–45.

    PubMed  CAS  Google Scholar 

  214. Tomaselli GF, Marban E. Electrophysiological remodeling in hypertrophy and heart failure. Cardiovasc Res. 1999;42:270–83.

    Article  PubMed  CAS  Google Scholar 

  215. Sipido KR, Volders PG, De Groot SH, Verdonck F, Van de WF, Wellens HJ, et al. Enhanced Ca2+ release and Na/Ca exchange activity in hypertrophied canine ventricular myocytes: potential link between contractile adaptation and arrhythmogenesis. Circulation. 2000;102:2137–44.

    Article  PubMed  CAS  Google Scholar 

  216. Volders PG, Sipido KR, Vos MA, Spatjens RL, Leunissen JD, Carmeliet E, et al. Downregulation of delayed rectifier K(+) currents in dogs with chronic complete atrioventricular block and acquired torsades de pointes. Circulation. 1999;100:2455–61.

    Article  PubMed  CAS  Google Scholar 

  217. Undrovinas AI, Maltsev VA, Sabbah HN. Repolarization abnormalities in cardiomyocytes of dogs with chronic heart failure: role of sustained inward current. Cell Mol Life Sci. 1999;55:494–505.

    Article  PubMed  CAS  Google Scholar 

  218. Maltsev VA, Sabbah HN, Higgins RS, Silverman N, Lesch M, Undrovinas AI. Novel, ultraslow inactivating sodium current in human ­ventricular cardiomyocytes. Circulation. 1998;98:2545–52.

    Article  PubMed  CAS  Google Scholar 

  219. Belardinelli L, Antzelevitch C, Vos MA. Assessing predictors of drug-induced torsade de pointes. Trends Pharmacol Sci. 2003;24:619–25.

    Article  PubMed  CAS  Google Scholar 

  220. Antzelevitch C, Shimizu W. Cellular mechanisms underlying the long QT syndrome. Curr Opin Cardiol. 2002;17:43–51.

    Article  PubMed  Google Scholar 

  221. Shimizu W, Antzelevitch C. Cellular basis for the ECG features of the LQT1 form of the long QT syndrome: effects of b-adrenergic agonists and antagonists and sodium channel blockers on transmural dispersion of repolarization and torsade de pointes. Circulation. 1998;98:2314–22.

    Article  PubMed  CAS  Google Scholar 

  222. Shimizu W, Antzelevitch C. Sodium channel block with mexiletine is effective in reducing dispersion of repolarization and preventing torsade de pointes in LQT2 and LQT3 models of the long-QT syndrome. Circulation. 1997;96:2038–47.

    Article  PubMed  CAS  Google Scholar 

  223. Shimizu W, Antzelevitch C. Effects of a K+ channel opener to reduce transmural dispersion of repolarization and prevent torsade de pointes in LQT1, LQT2, and LQT3 models of the long-QT syndrome. Circulation. 2000;102:706–12.

    Article  PubMed  CAS  Google Scholar 

  224. Antzelevitch C. Heterogeneity of cellular repolarization in LQTS: the role of M cells. Eur Heart J Suppl. 2001;3:K2–16.

    Article  CAS  Google Scholar 

  225. Shimizu W, Antzelevitch C. Differential effects of beta-adrenergic agonists and antagonists in LQT1, LQT2 and LQT3 models of the long QT syndrome. J Am Coll Cardiol. 2000;35:778–86.

    Article  PubMed  CAS  Google Scholar 

  226. Antzelevitch C, Shimizu W, Yan GX, Sicouri S, Weissenburger J, Nesterenko VV, et al. The M cell: its contribution to the ECG and to normal and abnormal electrical function of the heart. J Cardiovasc Electrophysiol. 1999;10:1124–52.

    Article  PubMed  CAS  Google Scholar 

  227. Anyukhovsky EP, Sosunov EA, Gainullin RZ, Rosen MR. The controversial M cell. J Cardiovasc Electrophysiol. 1999;10:244–60.

    Article  PubMed  CAS  Google Scholar 

  228. Li GR, Feng J, Yue L, Carrier M. Transmural heterogeneity of action potentials and Ito1 in myocytes isolated from the human right ventricle. Am J Physiol. 1998;275:H369–77.

    PubMed  CAS  Google Scholar 

  229. Gussak I, Brugada P, Brugada J, Wright RS, Kopecky SL, Chaitman BR, et al. Idiopathic short QT interval: a new clinical syndrome? Cardiology. 2000;94:99–102.

    Article  PubMed  CAS  Google Scholar 

  230. Gussak I, Brugada P, Brugada J, Antzelevitch C, Osbakken M, Bjerregaard P. ECG phenomenon of idiopathic and paradoxical short QT intervals. Card Electrophysiol Rev. 2002;6:49–53.

    Article  PubMed  Google Scholar 

  231. Patel C, Yan GX, Antzelevitch C. Short QT syndrome: from bench to bedside. Circ Arrhythm Electrophysiol. 2010;3:401–8.

    Article  PubMed  Google Scholar 

  232. Gaita F, Giustetto C, Bianchi F, Wolpert C, Schimpf R, Riccardi R, et al. Short QT syndrome: a familial cause of sudden death. Circulation. 2003;108:965–70.

    Article  PubMed  Google Scholar 

  233. Bellocq C, Van Ginneken AC, Bezzina CR, Alders M, Escande D, Mannens MM, et al. Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation. 2004;109:2394–7.

    Article  PubMed  Google Scholar 

  234. Brugada R, Hong K, Dumaine R, Cordeiro JM, Gaita F, Borggrefe M, et al. Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation. 2004;109:30–5.

    Article  PubMed  CAS  Google Scholar 

  235. Priori SG, Pandit SV, Rivolta I, Berenfeld O, Ronchetti E, Dhamoon A, et al. A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ Res. 2005;96:800–7.

    Article  PubMed  CAS  Google Scholar 

  236. Templin C, Ghadri JR, Rougier JS, Baumer A, Kaplan V, Albese M, et al. Identification of a novel loss-of-function calcium channel gene mutation in short QT syndrome (SQTS6). Eur Heart J. 2011;32:1077–88.

    Article  PubMed  CAS  Google Scholar 

  237. Extramiana F, Antzelevitch C. Amplified transmural dispersion of repolarization as the basis for arrhythmogenesis in a canine ventricular-wedge model of short QT syndrome. Circulation. 2004;110:3661–6.

    Article  PubMed  Google Scholar 

  238. Patel C, Antzelevitch C. Cellular basis for arrhythmogenesis in an experimental model of the SQT1 form of the short QT syndrome. Heart Rhythm. 2008;5:585–90.

    Article  PubMed  Google Scholar 

  239. Nof E, Burashnikov A, Antzelevitch C. Cellular basis for atrial fibrillation in an experimental model of short QT1: implications for a pharmacological approach to therapy. Heart Rhythm. 2010;7:251–7.

    Article  PubMed  Google Scholar 

  240. Anttonen O, Vaananen H, Junttila J, Huikuri HV, Viitasalo M. Electrocardiographic transmural dispersion of repolarization in patients with inherited short QT syndrome. Ann Noninvasive Electrocardiol. 2008;13:295–300.

    Article  PubMed  Google Scholar 

  241. Gupta P, Patel C, Patel H, Narayanaswamy S, Malhotra B, Green JT, et al. Tp-e/QT ratio as an index of arrhythmogenesis. J Electrocardiol. 2008;41:567–74.

    Article  PubMed  Google Scholar 

  242. Anttonen O, Junttila MJ, Maury P, Schimpf R, Wolpert C, Borggrefe M, et al. Differences in twelve-lead electrocardiogram between symptomatic and asymptomatic subjects with short QT interval. Heart Rhythm. 2009;6:267–71.

    Article  PubMed  Google Scholar 

  243. Milberg P, Tegelkamp R, Osada N, Schimpf R, Wolpert C, Breithardt G, et al. Reduction of dispersion of repolarization and prolongation of postrepolarization refractoriness explain the antiarrhythmic effects of quinidine in a model of short QT syndrome. J Cardiovasc Electrophysiol. 2007;18:658–64.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement.

Supported by grants from the National Institutes of Health (HL 47678), NYSTEM (C026424) the American Heart Association, New York State Affiliate, and the Masons of New York State and Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Antzelevitch PhD, FACC, FAHA, FHRS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Antzelevitch, C., Burashnikov, A. (2013). Mechanisms of Cardiac Arrhythmia. In: Gussak, I., Antzelevitch, C. (eds) Electrical Diseases of the Heart. Springer, London. https://doi.org/10.1007/978-1-4471-4881-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4881-4_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4880-7

  • Online ISBN: 978-1-4471-4881-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics