Advertisement

Idiopathic Ventricular Fibrillation

  • Sami Viskin
  • Arnon Adler
  • Bernard Belhassen
Chapter

Abstract

Idiopathic ventricular fibrillation (VF) is an uncommon disease that manifests as syncope or cardiac arrest caused by rapid polymorphic ventricular tachycardia (VT) or VF in the absence of organic heart disease. Because the term “idiopathic” means “absence of identifiable etiology”, idiopathic VF is essentially a diagnosis by exclusion. However, typical clinical and electrophysiological characteristics present in some patients often allows for a straight-forward positive diagnosis. Moreover, it is now clear that many patients with idiopathic VF have, in fact, a genetic channelopathy, presenting in the form of “idiopathic VF with early repolarization” or “congenital short QT syndrome (SQTS)”. This chapter summarizes the history of this disease as we know it since its first description in 1929 to the most recent developments in our understanding of its pathophysiology. Idiopathic VF leads to syncope or cardiac arrest typically during early adulthood and involves a relatively high incidence of arrhythmic storms (with clusters of VF episodes) that fail to respond to conventional antiarrhythmic therapy (including amiodarone) but respond exquisitely to intravenous isoproterenol and oral quinidine. The mode of onset of spontaneous arrhythmias in idiopathic VF, namely, the triggering of rapid polymorphic VT/VF by single ventricular extrasystoles with very short (R-on-T) coupling intervals. The extrasystoles triggering VF have been mapped mainly to the His-Purkinje fibers in the left ventricle and may be ablated. The clinical data linking idiopathic VF to the congenital SQTS and the malignant early repolarization syndrome are presented and the genetic mutations so far described are presented.

Keywords

Ventricular fibrillation Sudden death Short QT syndrome Early repolarization 

References

  1. 1.
    Dock W. Transitory ventricular fibrillation as a cause of syncope and its prevention by quinidine sulfate. Am Heart J. 1929;4:709–14.CrossRefGoogle Scholar
  2. 2.
    Belhassen B, Shapira I, Shoshani D, Paredes A, Miller H, Laniado S. Idiopathic ventricular fibrillation: inducibility and beneficial effects of class I antiarrhythmic agents. Circulation. 1987;75:809–16.PubMedCrossRefGoogle Scholar
  3. 3.
    Viskin S, Belhassen B. Idiopathic ventricular fibrillation. Am Heart J. 1990;120:661–71.PubMedCrossRefGoogle Scholar
  4. 4.
    Leenhardt A, Glaser E, Burguera M, Nurnberg M, Maison-Blanche P, Coumel P. Short-coupled variant of torsade de pointes. A new electrocardiographic entity in the spectrum of idiopathic ventricular tachyarrhythmias. Circulation. 1994;89:206–15.PubMedCrossRefGoogle Scholar
  5. 5.
    Viskin S, Lesh M, Eldar M, et al. Mode of onset of malignant ventricular arrhythmias in idiopathic ventricular fibrillation. J Cardiovasc Electro­physiol. 1997;8:1115–20.PubMedCrossRefGoogle Scholar
  6. 6.
    Haissaguerre M, Extramiana F, Hocini M, et al. Mapping and ablation of ventricular fibrillation associated with long-QT and Brugada syndromes. Circulation. 2003;108:925–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Jervell A, Lange-Nielsen F. Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval and sudden death. Am Heart J. 1957;54:59–68.PubMedCrossRefGoogle Scholar
  8. 8.
    Romano C, Gemme G, Pongiglione R. Aritmie cardiache rare dell’eta pediatrica. Clin Pediatr. 1963;45:656–83.Google Scholar
  9. 9.
    Ward OC. A new familial cardiac syndrome in children. J Ir Med Assoc. 1964;54:103–6.PubMedGoogle Scholar
  10. 10.
    Leenhardt A, Lucet V, Denjoy I, Grau F, Ngoc D, Coumel P. Catecholaminergic polymorphic ventricular tachycardia in children. A 7-year follow-up of 21 patients. Circulation. 1995;91:1512–19.PubMedCrossRefGoogle Scholar
  11. 11.
    Aponte G. The enigma of “Bangungut”. Ann Intern Med. 1960;52:1258–63.PubMedCrossRefGoogle Scholar
  12. 12.
    Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol. 1992;20:1391–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Viskin S, Fish R, Eldar M, et al. Prevalence of the Brugada sign in idiopathic ventricular fibrillation and healthy controls. Heart. 2000;84:31–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Nademanee K, Veerakul G, Nimmannit S, et al. Arrhythmogenic marker for the sudden unexpected death syndrome in Thai men. Circulation. 1997;96:2595–600.PubMedCrossRefGoogle Scholar
  15. 15.
    Gussak I, Brugada P, Brugada J, et al. Idiopathic short QT interval: a new clinical syndrome? Cardiology. 2000;94:99–102.PubMedCrossRefGoogle Scholar
  16. 16.
    Gaita F, Giustetto C, Bianchi F, et al. Short QT syndrome: a familial cause of sudden death. Circulation. 2003;108:965–70.PubMedCrossRefGoogle Scholar
  17. 17.
    Schimpf R, Bauersfeld U, Gaita F, Wolpert C. Short QT syndrome: successful prevention of sudden cardiac death in an adolescent by implantable cardioverter-defibrillator treatment for primary prophylaxis. Heart Rhythm. 2005;2:416–17.PubMedCrossRefGoogle Scholar
  18. 18.
    Viskin S, Zeltser D, Ish-Shalom M, et al. Is idiopathic ventricular fibrillation a short QT syndrome? Comparison of QT intervals of patients with idiopathic ventricular fibrillation and healthy controls. Heart Rhythm. 2004;1:587–91.PubMedCrossRefGoogle Scholar
  19. 19.
    Haissaguerre M, Derval N, Sacher F, et al. Sudden cardiac arrest associated with early repolarization. N Engl J Med. 2008;358:2016–23.PubMedCrossRefGoogle Scholar
  20. 20.
    Nam GB, Kim YH, Antzelevitch C. Augmentation of J waves and electrical storms in patients with early repolarization. N Engl J Med. 2008;358:2078–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Rosso R, Kogan E, Belhassen B, et al. J-point elevation in survivors of primary ventricular fibrillation and matched control subjects incidence and clinical significance. J Am Coll Cardiol. 2008;52:1231–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Antzelevitch C, Yan GX. J wave syndromes. Heart Rhythm. 2010;7:549–58.PubMedCrossRefGoogle Scholar
  23. 23.
    Gussak I, Bjerregaard P. Short QT syndrome–5 years of progress. J Electrocardiol. 2005;38:375–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Viskin S. The QT, interval: too long, too short or just right. Heart Rhythm. 2009;6:711–15.PubMedCrossRefGoogle Scholar
  25. 25.
    Templin C, Ghadri JR, Rougier JS, et al. Identification of a novel loss-of-function calcium channel gene mutation in short QT syndrome (SQTS6). Eur Heart J. 2011;32:1077–88.PubMedCrossRefGoogle Scholar
  26. 26.
    Fujiki A, Sugao M, Nishida K, et al. Repolarization abnormality in idiopathic ventricular fibrillation: assessment using 24-hour QT-RR and QaT-RR relationships. J Cardiovasc Electrophysiol. 2004;15:59–63.PubMedCrossRefGoogle Scholar
  27. 27.
    Sugao M, Fujiki A, Sakabe M, et al. New quantitative methods for evaluation of dynamic changes in QT interval on 24 hour Holter ECG recordings: QT interval in idiopathic ventricular fibrillation and long QT syndrome. Heart. 2006;92:201–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Alders M, Koopmann TT, Christiaans I, et al. Haplotype-sharing analysis implicates chromosome 7q36 harboring DPP6 in familial idiopathic ventricular fibrillation. Am J Hum Genet. 2009;84:468–76.PubMedCrossRefGoogle Scholar
  29. 29.
    Allan WC, Timothy K, Vincent GM, Palomaki GE, Neveux LM, Haddow JE. Long QT syndrome in children: the value of rate corrected QT interval and DNA analysis as screening tests in the general population. J Med Screen. 2001;8:173–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Ghosh S, Cooper DH, Vijayakumar R, et al. Early repolarization associated with sudden death: insights from noninvasive electrocardiographic imaging. Heart Rhythm. 2010;7:534–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Viskin S, Rosso R, Halkin A. Making sense of early repolarization. Heart Rhythm. 2012;9:566–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Watanabe H, Nogami A, Ohkubo K, et al. Electrocardiographic characteristics and SCN5A mutations in idiopathic ventricular fibrillation associated with early repolarization. Circ Arrhythm Electrophysiol. 2011;4:874–81.PubMedCrossRefGoogle Scholar
  33. 33.
    Belhassen B, Viskin S. Idiopathic ventricular tachycardia and fibrillation. J Cardiovasc Electro­physiol. 1993;4:356–68.PubMedCrossRefGoogle Scholar
  34. 34.
    Haissaguerre M, Shah DC, Jais P, et al. Role of Purkinje conducting system in triggering of idiopathic ventricular fibrillation. Lancet. 2002;359:677–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Haissaguerre M, Shoda M, Jais P, et al. Mapping and ablation of idiopathic ventricular fibrillation. Circulation. 2002;106:962–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Sinha AM, Schmidt M, Marschang H, et al. Role of left ventricular scar and Purkinje-like potentials during mapping and ablation of ventricular fibrillation in dilated cardiomyopathy. Pacing Clin Electrophysiol. 2009;32:286–90.PubMedCrossRefGoogle Scholar
  37. 37.
    Arnar DO, Bullinga JR, Martins JB. Role of the Purkinje system in spontaneous ventricular tachycardia during acute ischemia in a canine model. Circulation. 1997;96:2421–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Ideker RE, Kong W, Pogwizd S. Purkinje fibers and arrhythmias. Pacing Clin Electrophysiol. 2009;32:283–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Nogami A. Purkinje-related arrhythmias part ii: polymorphic ventricular tachycardia and ventricular fibrillation. Pacing Clin Electrophysiol. 2011;34:1034–49.PubMedCrossRefGoogle Scholar
  40. 40.
    Berenfeld O, Jalife J. Purkinje-muscle reentry as a mechanism of polymorphic ventricular arrhythmias in a 3-dimensional model of the ventricles. Circ Res. 1998;82:1063–77.PubMedCrossRefGoogle Scholar
  41. 41.
    Burashnikov A, Antzelevitch C. Late-phase 3 EAD. A unique mechanism contributing to initiation of atrial fibrillation. Pacing Clin Electrophysiol. 2006;29:290–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Antzelevitch C, Bernstein MJ, Feldman HN, Moe GK. Parasystole, reentry, and tachycardia: a canine preparation of cardiac arrhythmias occurring across inexcitable segments of tissue. Circulation. 1983;68:1101–15.PubMedCrossRefGoogle Scholar
  43. 43.
    Viskin S, Belhassen B. Polymorphic ventricular tachyarrhythmias in the absence of organic heart disease. Classification, differential diagnosis and implications for therapy. Prog Cardiovasc Dis. 1998;41:17–34.PubMedCrossRefGoogle Scholar
  44. 44.
    Haissaguerre M, Sacher F, Nogami A, et al. Characteristics of recurrent ventricular fibril­lation associated with inferolateral early repolarization role of drug therapy. J Am Coll Cardiol. 2009;53:612–19.PubMedCrossRefGoogle Scholar
  45. 45.
    Pasquie JL, Sanders P, Hocini M, et al. Fever as a precipitant of idiopathic ventricular fibrillation in patients with normal hearts. J Cardiovasc Electrophysiol. 2004;15:1271–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Yan GX, Antzelevitch C. Cellular basis for the normal T wave and the electrocardiographic manifestations of the long-QT syndrome. Circulation. 1998;98:1928–36.PubMedCrossRefGoogle Scholar
  47. 47.
    Castro Hevia J, Antzelevitch C, Tornes Barzaga F, et al. Tpeak-Tend and Tpeak-Tend dispersion as risk factors for ventricular tachycardia/ventricular fibrillation in patients with the Brugada syndrome. J Am Coll Cardiol. 2006;47:1828–34.PubMedCrossRefGoogle Scholar
  48. 48.
    Abe A, Ikeda T, Tsukada T, et al. Circadian variation of late potentials in idiopathic ventricular fibrillation associated with J waves: insights into alternative pathophysiology and risk stratification. Heart Rhythm. 2010;7:675–82.PubMedCrossRefGoogle Scholar
  49. 49.
    Nam GB, Ko KH, Kim J, et al. Mode of onset of ventricular fibrillation in patients with early repolarization pattern vs. Brugada syndrome. Eur Heart J. 2009;31:330–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Rosso R, Glikson E, Belhassen B, et al. Distinguishing “benign” from “malignant early repolarization”: The value of the ST-segment morphology. Heart Rhythm. 2012;9(2):225–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Champagne J, Geelen P, Philippon F, Brugada P. Recurrent cardiac events in patients with idiopathic ventricular fibrillation, excluding patients with the Brugada syndrome. BMC Med. 2005;3:1.PubMedCrossRefGoogle Scholar
  52. 52.
    Belhassen B, Pelleg A, Miller HI, Laniado S. Serial electrophysiological studies in a young patient with recurrent ventricular fibrillation. PACE. 1981;4:92–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Belhassen B, Viskin S, Fish R, Glick A, Setbon I, Eldar M. Effects of electrophysiologic-guided therapy with Class IA antiarrhythmic drugs on the long-term outcome of patients with idiopathic ventricular fibrillation with or without the Brugada syndrome. J Cardiovasc Electrophysiol. 1999;10:1301–12.PubMedCrossRefGoogle Scholar
  54. 54.
    Gaita F, Giustetto C, Bianchi F, et al. Short QT syndrome: pharmacological treatment. J Am Coll Cardiol. 2004;43:1494–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Brugada P, Geelen P, Brugada R, Mont L, Brugada J. Prognostic value of electrophysiologic investigations in Brugada syndrome. J Cardiovasc Electrophysiol. 2001;12:1004–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Shimada M, Miyazaki T, Miyoshi S, et al. Sustained monomorphic ventricular tachycardia in a patient with Brugada syndrome. Jpn Circ J. 1996;60:364–70.PubMedCrossRefGoogle Scholar
  57. 57.
    Viskin S, Belhassen B. Clinical problem solving: when you only live twice. N Engl J Med. 1995;332:1221–5.PubMedCrossRefGoogle Scholar
  58. 58.
    Boersma LV, Jaarsma W, Jessurun ER, Van Hemel NH, Wever EF. Brugada syndrome: a case report of monomorphic ventricular tachycardia. Pacing Clin Electrophysiol. 2001;24:112–15.PubMedCrossRefGoogle Scholar
  59. 59.
    Dinckal MH, Davutoglu V, Akdemir I, Soydinc S, Kirilmaz A, Aksoy M. Incessant monomorphic ventricular tachycardia during febrile illness in a patient with Brugada syndrome: fatal electrical storm. Europace. 2003;5:257–61.PubMedCrossRefGoogle Scholar
  60. 60.
    Mok NS, Chan NY, Chiu AC. Successful use of quinidine in treatment of electrical storm in Brugada syndrome. Pacing Clin Electrophysiol. 2004;27:821–3.PubMedCrossRefGoogle Scholar
  61. 61.
    Brugada P, Green M, Abdollah H, Wellens HJJ. Significance of ventricular arrhythmias initiated by programmed ventricular stimulation: the importance of the type of ventricular arrhythmia induced and the number of premature stimuli required. Circulation. 1984;69:87–92.PubMedCrossRefGoogle Scholar
  62. 62.
    Morady F, DiCarlo L, Baerman J, de Buitleir M. Comparison of coupling intervals that induce clinical and nonclinical forms of ventricular tachycardia during programmed stimulation. Am J Cardiol. 1986;57:1269–73.PubMedCrossRefGoogle Scholar
  63. 63.
    Stevenson WG, Brugada P, Waldecker B, Zehender M, Wellens HJ. Can potentially significant polymorphic ventricular arrhythmias initiated by programmed stimulation be distinguished from those that are nonspecific? Am Heart J. 1986;111:1073–80.PubMedCrossRefGoogle Scholar
  64. 64.
    Viskin S, Rogowski O. Asymptomatic Brugada syndrome: a cardiac ticking time-bomb? Europace. 2007;9:707–10.PubMedCrossRefGoogle Scholar
  65. 65.
    Viskin S, Rosso R, Rogowski O, Belhassen B. The “short-coupled” variant of right ventricular outflow ventricular tachycardia: a not-so-benign form of benign ventricular tachycardia? J Card­iovasc Electrophysiol. 2005;16:912–16.PubMedCrossRefGoogle Scholar
  66. 66.
    Noda T, Shimizu W, Taguchi A, et al. Malignant entity of idiopathic ventricular fibrillation and polymorphic ventricular tachycardia initiated by premature extrasystoles originating from the right ventricular outflow tract. J Am Coll Cardiol. 2005;46:1288–94.PubMedCrossRefGoogle Scholar
  67. 67.
    Myerburg R, Kessler K, Mallon S, et al. Life-threatening ventricular arrhythmias in patients with silent myocardial ischemia due to coronary-artery spasm. N Engl J Med. 1992;326:1451–5.PubMedCrossRefGoogle Scholar
  68. 68.
    Wolfe CL, Nibbley C, Bhandari A, Chatterjee K, Scheinman MM. Polymorphous ventricular tachycardia associated with acute myocardial infarction. Circulation. 1991;84:1543–51.PubMedCrossRefGoogle Scholar
  69. 69.
    Kakishita M, Kurita T, Matsuo K, et al. Mode of onset of ventricular fibrillation in patients with Brugada syndrome detected by implantable cardioverter defibrillator therapy. J Am Coll Cardiol. 2000;36:1646–53.PubMedCrossRefGoogle Scholar
  70. 70.
    Chattha IS, Sy RW, Yee R, et al. Utility of the recovery electrocardiogram after exercise: a novel indicator for the diagnosis and genotyping of long QT syndrome? Heart Rhythm. 2010;7:906–11.PubMedCrossRefGoogle Scholar
  71. 71.
    Krahn AD, Klein GJ, Yee R. Hysteresis of the RT interval with exercise: a new marker for the long-QT syndrome? Circulation. 1997;96:1551–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Sy RW, van der Werf C, Chattha IS, et al. Derivation and validation of a simple exercise-based algorithm for prediction of genetic testing in relatives of LQTS probands. Circulation. 2011;124(20):2187–94.PubMedCrossRefGoogle Scholar
  73. 73.
    Viskin S, Postema PG, Bhuiyan ZA, et al. The response of the QT interval to the brief tachycardia provoked by standing: a bedside test for diagnosing long QT syndrome. J Am Coll Cardiol. 2010;55:1955–61.PubMedCrossRefGoogle Scholar
  74. 74.
    Hong K, Brugada J, Oliva A, et al. Value of electrocardiographic parameters and ajmaline test in the diagnosis of Brugada syndrome caused by SCN5A mutations. Circulation. 2004;110:3023–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Wolpert C, Echternach C, Veltmann C, et al. Intravenous drug challenge using flecainide and ajmaline in patients with Brugada syndrome. Heart Rhythm. 2005;2:254–60.PubMedCrossRefGoogle Scholar
  76. 76.
    Ackerman MJ, Khositseth A, Tester DJ, Hejlik JB, Shen WK, Porter CB. Epinephrine-induced QT interval prolongation: a gene-specific paradoxical response in congenital long QT syndrome. Mayo Clin Proc. 2002;77:413–21.PubMedGoogle Scholar
  77. 77.
    Shimizu W, Noda T, Takaki H, et al. Epinephrine unmasks latent mutation carriers with LQT1 form of congenital long-QT syndrome. J Am Coll Cardiol. 2003;41:633–42.PubMedCrossRefGoogle Scholar
  78. 78.
    Garratt CJ, Antoniou A, Griffith MJ, Ward DE, Camm AJ. Use of intravenous adenosine in sinus rhythm as a diagnostic test for latent preexcitation. Am J Cardiol. 1990;65:868–73.PubMedCrossRefGoogle Scholar
  79. 79.
    Varnava AM, Elliott PM, Baboonian C, Davison F, Davies MJ, McKenna WJ. Hypertrophic cardiomyopathy: histopathological features of sudden death in cardiac troponin T disease. Circulation. 2001;104:1380–4.PubMedCrossRefGoogle Scholar
  80. 80.
    Varnava A, Baboonian C, Davison F, et al. A new mutation of the cardiac troponin T gene causing familial hypertrophic cardiomyopathy without left ventricular hypertrophy. Heart. 1999;82:621–4.PubMedGoogle Scholar
  81. 81.
    Fontaine G, Fornes P, Herbert JL. Ventricular tachycardia in arrhythmogenic right ventricular cardiomyopathies. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology: from cell to bedside. 3rd ed. Philadelphia: W.B. Saunders; 2003.Google Scholar
  82. 82.
    Deantonio HJ, Kaul S, Lerman BB. Reversible myocardial depression in survivors of cardiac arrest. Pacing Clin Electrophysiol. 1990;13:982–5.PubMedCrossRefGoogle Scholar
  83. 83.
    Viskin S, Halkin A, Olgin JE. Treatable causes of sudden death: not really “treatable” or not really the cause? J Am Coll Cardiol. 2001;38:1725–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Brembilla-Perrot B, Terrier de la Chaise A, Isaaz K, Marcon F, Cherrier F, Pernot C. Inducible multiform ventricular tachycardia in Wolff-Parkinson-White syndrome. Br Heart J. 1987;58:89–95.PubMedCrossRefGoogle Scholar
  85. 85.
    Wang Y, Griffin J, Lesh M, Cohen T, Chien W, Scheinman M. Patients with supraventricular tachycardia presenting with aborted sudden death: incidence, mechanism and long-term follow-up. J Am Coll Cardiol. 1991;18:1720–1.CrossRefGoogle Scholar
  86. 86.
    Tester DJ, Kopplin LJ, Will ML, Ackerman MJ. Spectrum and prevalence of cardiac ryanodine receptor (RyR2) mutations in a cohort of unrelated patients referred explicitly for long QT syndrome genetic testing. Heart Rhythm. 2005;2:1099–105.PubMedCrossRefGoogle Scholar
  87. 87.
    Hayashi M, Denjoy I, Extramiana F, et al. Incidence and risk factors of arrhythmic events in catecholaminergic polymorphic ventricular tachycardia. Circulation. 2009;119:2426–34.PubMedCrossRefGoogle Scholar
  88. 88.
    Nof E, Belhassen B, Arad M, et al. Postpacing abnormal repolarization in catecholaminergic polymorphic ventricular tachycardia associated with a mutation in the cardiac ryanodine receptor gene. Heart Rhythm. 2011;8:1546–52.PubMedCrossRefGoogle Scholar
  89. 89.
    Vincent GM, Timothy KW, Leppert M, Keating M. The spectrum of symptoms and QT intervals in carriers of the gene for the long QT syndrome. N Engl J Med. 1992;327:846–52.PubMedCrossRefGoogle Scholar
  90. 90.
    Hong K, Bjerregaard P, Gussak I, Brugada R. Short QT syndrome and atrial fibrillation caused by mutation in KCNH2. J Cardiovasc Electrophysiol. 2005;16:394–6.PubMedCrossRefGoogle Scholar
  91. 91.
    Priori SG, Pandit SV, Rivolta I, et al. A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ Res. 2005;96:800–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Bellocq C, van Ginneken AC, Bezzina CR, et al. Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation. 2004;109:2394–7.PubMedCrossRefGoogle Scholar
  93. 93.
    Borggrefe M, Wolpert C, Antzelevitch C, et al. Short QT syndrome. Genotype-phenotype correlations. J Electrocardiol. 2005;38:75–80.PubMedCrossRefGoogle Scholar
  94. 94.
    Belhassen B. A 25-year control of idiopathic ventricular fibrillation with electrophysiologic-guided antiarrhythmic drug therapy. Heart Rhythm. 2004;1:352–4.PubMedCrossRefGoogle Scholar
  95. 95.
    Wolpert C, Schimpf R, Giustetto C, et al. Further insights into the effect of quinidine in short QT syndrome caused by a mutation in HERG. J Cardiovasc Electrophysiol. 2005;16:54–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Schimpf R, Wolpert C, Bianchi F, et al. Congenital short QT syndrome and implantable cardioverter defibrillator treatment: inherent risk for inappropriate shock delivery. J Cardiovasc Electrophysiol. 2003;14:1273–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Strohmer B, Schernthaner C, Pichler M. T-wave oversensing by an implantable cardioverter defibrillator after successful ablation of idiopathic ventricular fibrillation. Pacing Clin Electrophysiol. 2006;29:431–5.PubMedCrossRefGoogle Scholar
  98. 98.
    Remme CA, Wever EF, Wilde AA, Derksen R, Hauer RN. Diagnosis and long-term follow-up of the Brugada syndrome in patients with idiopathic ventricular fibrillation. Eur Heart J. 2001;22:400–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Shimizu W, Matsuo K, Takagi M, et al. Body surface distribution and response to drugs of ST segment elevation in Brugada syndrome: clinical implication of eighty-seven-lead body surface potential mapping and its application to twelve-lead electrocardiograms. J Cardiovasc Electro­physiol. 2000;11:396–404.PubMedCrossRefGoogle Scholar
  100. 100.
    Shimeno K, Takagi M, Maeda K, Tatsumi H, Doi A, Yoshiyama M. Usefulness of multichannel holter ECG recording in the third intercostal space for detecting type 1 brugada ECG: comparison with repeated 12-lead ECGs. J Cardiovasc Electrophysiol. 2009;20(9):1026–31.PubMedCrossRefGoogle Scholar
  101. 101.
    Sangwatanaroj S, Prechawat S, Sunsaneewitayakul B, Sitthisook S, Tosukhowong P, Tungsanga K. New electrocardiographic leads and the procainamide test for the detection of the Brugada sign in sudden unexplained death syndrome survivors and their relatives. Eur Heart J. 2001;22:2290–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Viskin S, Antzelevitch C. The cardiologists’ worst nightmare sudden death from “benign” ventricular arrhythmias. J Am Coll Cardiol. 2005;46:1295–7.PubMedCrossRefGoogle Scholar
  103. 103.
    Shimizu W. Arrhythmias originating from the right ventricular outflow tract: how to distinguish “malignant” from “benign”? Heart Rhythm. 2009;6:1507–11.PubMedCrossRefGoogle Scholar
  104. 104.
    Wever EFD, Hauer RNW, Oomen A, Peters RHJ, Bakker PFA, Robles de Medina EO. Unfavorable outcome in patients with primary electrical disease who survived an episode of ventricular fibrillation. Circulation. 1993;88:1021–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Moe T. Morgagni-Adams-Stokes attacks caused by transient recurrent ventricular fibrillation in a patient without apparent heart disease. Am Heart J. 1949;37:811–18.PubMedCrossRefGoogle Scholar
  106. 106.
    Konty F, Dale J. Self-terminating idiopathic ventricular fibrillation presenting as syncope: a 40-year follow-up report. J Intern Med. 1990;227:211–13.CrossRefGoogle Scholar
  107. 107.
    Belhassen B, Viskin S. Management of idiopathic ventricular fibrillation: implantable defibrillators? antiarrhythmic drugs? ANE. 1998;3:125–8.Google Scholar
  108. 108.
    Belhassen B, Glick A, Viskin S. Efficacy of quinidine in high-risk patients with Brugada syndrome. Circulation. 2004;110:1731–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Belhassen B, Shapira I, Sheps D, Shoshani D, Laniado S. Programmed ventricular stimulation using up to two extrastimuli and repetition of double extrastimulation for induction of ventricular tachycardia: A new highly sensitive and specific protocol. Am J Cardiol. 1990;65:615–22.PubMedCrossRefGoogle Scholar
  110. 110.
    Belhassen B, Glick A, Viskin S. Excellent long-term reproducibility of the electrophysiologic efficacy of quinidine in patients with idiopathic ventricular fibrillation and Brugada syndrome. Pacing Clin Electrophysiol. 2009;32:294–301.PubMedCrossRefGoogle Scholar
  111. 111.
    Haghjoo M, Arya A, Heidari A, Sadr-Ameli MA. Suppression of electrical storm by oral quinidine in a patient with Brugada syndrome. J Cardiovasc Electrophysiol. 2005;16:674.PubMedCrossRefGoogle Scholar
  112. 112.
    Marquez MF, Rivera J, Hermosillo AG, et al. Arrhythmic storm responsive to quinidine in a patient with Brugada syndrome and vasovagal syncope. Pacing Clin Electrophysiol. 2005;28:870–3.PubMedCrossRefGoogle Scholar
  113. 113.
    Marquez MF, Salica G, Hermosillo AG, et al. Ionic basis of pharmacological therapy in Brugada syndrome. J Cardiovasc Electrophysiol. 2007;18:234–40.PubMedCrossRefGoogle Scholar
  114. 114.
    Aizawa Y, Tamura M, Chinushi M, et al. An attempt at electrical catheter ablation of the arrhythmogenic area in idiopathic ventricular fibrillation. Am Heart J. 1992;123:257–60.PubMedCrossRefGoogle Scholar
  115. 115.
    Kusano KF, Yamamoto M, Emori T, Morita H, Ohe T. Successful catheter ablation in a patient with polymorphic ventricular tachycardia. J Cardiovasc Electrophysiol. 2000;11:682–5.PubMedCrossRefGoogle Scholar
  116. 116.
    Knecht S, Sacher F, Wright M, et al. Long-term follow-up of idiopathic ventricular fibrillation ablation: a multicenter study. J Am Coll Cardiol. 2009;54:522–8.PubMedCrossRefGoogle Scholar
  117. 117.
    The Antiarrhythmic Versus Implantable Defibrillators (AVID) Investigators. A comparison of antiarrhythmic-drug therapy with implantable defibrillators in patients resuscitated from near-fatal ventricular arrhythmias. N Engl J Med. 1997;337:1576–83.CrossRefGoogle Scholar
  118. 118.
    Kron J, Herre J, Renfroe EG, et al. Lead- and device-related complications in the antiarrhythmics versus implantable defibrillators trial. Am Heart J. 2001;141:92–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Sacher F, Probst V, Iesaka Y, et al. Outcome after implantation of a cardioverter-defibrillator in patients with Brugada syndrome: a multicenter study. Circulation. 2006;114:2317–24.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of Cardiology, Sourasky Tel Aviv Medical Center and Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
  2. 2.Department of Cardiology, Tel Aviv Sourasky Medical Center and Sackler School of MedicineTel Aviv UniversityTel AvivIsrael

Personalised recommendations