Skip to main content

Progressive Cardiac Conduction Disease

  • Chapter
  • First Online:
  • 3132 Accesses

Abstract

Cardiac conduction disease (CCD) is a common medical problem, with about 3 million people worldwide with pacemakers and 600,000 implanted each year. Despite its prevalence, very little is known about the molecular pathogenesis of CCD in the general population. Therefore, investigators have turned to cases of syndromic and isolated familial conduction system disease to gain insights.

Isolated familial CCD can result from a diverse set of genetic mutations rather than a single unifying cause or pathway. Mutations in ion channels SCN5A, SCN1B and TRMP4 encoding respectively the pore forming cardiac sodium channel Nav1.5, the Nav1.5 auxiliary regulatory subunit and a monovalent-permeable, nonselective cation channel have been identified in several families. The disease-causing mechanisms are loss of function in abnormal SCN5A and SCN1b channel whereas abnormal TRPM4 channel impairs endocytosis and leads to elevated TRPM4 channel density at the cell surface corresponding to a gain-of-function mechanism. Abnormal cell-to-cell communication due to a missense mutation in GJA5 encoding Connexin 40 also causes CCD in rare cases.

Besides isolated CCD, many diseases such as dilated or restrictive, cardiomyopathies associate cardiac conduction defects. Mutations in Nkx2.5, a cardiac specific transcription factor, Lamin A/C, a gene encoding a nuclear membrane protein and PRKAG2, a gene encoding a protein kinase subunit also lead to CCD.

In addition to Mendelian diseases caused by rare variants with strong effects, common variants can also impact electrocardiographic traits in the general population. Multiple associations identified loci to pathways with established role in ventricular conduction, transcription factors and calcium-handling proteins.

Altogether, CCD appears to be a phenotypical and genetically heterogeneous condition. The number of ways that the conduction system may fail speaks to the underlying complexity of this highly specialized tissue that is only now beginning to be unraveled by genetic investigations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Michaelsson M, Jonzon A, Riesenfeld T. Isolated congenital complete atrioventricular block in adult life. A prospective study. Circulation. 1995;92(3):442–9.

    Article  PubMed  CAS  Google Scholar 

  2. Balmer C, Fasnacht M, Rahn M, et al. Long-term follow up of children with congenital complete atrioventricular block and the impact of pacemaker therapy. Europace. 2002;4(4):345–9.

    Article  PubMed  CAS  Google Scholar 

  3. Tan HL, Bezzina CR, Smits JP, Verkerk AO, Wilde AA. Genetic control of sodium channel function. Cardiovasc Res. 2003;57(4):961–73.

    Article  PubMed  CAS  Google Scholar 

  4. Roden DM, Balser JR, George Jr AL, et al. Cardiac ion channels. Annu Rev Physiol. 2002;64:431–75.

    Article  PubMed  CAS  Google Scholar 

  5. Roden DM, George Jr AL. Structure and function of cardiac sodium and potassium channels. Am J Physiol. 1997;273(2 Pt 2):H511–25.

    PubMed  CAS  Google Scholar 

  6. Benson DW. Genetics of atrioventricular conduction disease in humans. Anat Rec A Discov Mol Cell Evol Biol. 2004;280(2):934–9. Review.

    Article  PubMed  Google Scholar 

  7. Lenegre J. The pathology of complete atrio-­ventricular block. Prog Cardiovasc Dis. 1964;6:317–23.

    Article  Google Scholar 

  8. Lev M, Kinare SG, Pick A. The pathogenesis of complete atrioventricular block. Prog Cardiovasc Dis. 1964;6:317–26.

    Article  PubMed  CAS  Google Scholar 

  9. Morgagni GB. De sedibus, et causis morborum per anatomen indagatis libri quinque. 2 volums. In 1. Venetis, typ. Remondiniana 1761.

    Google Scholar 

  10. Adams R. Cases of disease of the heart, accompanied with pathological observation. Dublin Hosp rep. 1827;4:353–453.

    Google Scholar 

  11. Stokes W. Observations on some cases of permanently slow pulse. Dublin Q J M Sci. 1846;2:73–85.

    Google Scholar 

  12. van den Heuvel GCJ. Die ziekte van Stokres-Adams en een geval van aangeborne hart blok. Groningen; 1908.

    Google Scholar 

  13. Lev M, Kinare SG, Pick A. The pathogenesis of atrioventricular block in coronary disease. Circulation. 1970;42:409–25.

    Article  PubMed  CAS  Google Scholar 

  14. Bharati S, Lev M, Dhingra RC, et al. Electrophysiologic and pathologic correlations in two cases of chronic second degree atrioventricular block with left bundle branch block. Circulation. 1975;52(2):221–9.

    Article  PubMed  CAS  Google Scholar 

  15. Lev M, Cuadros H, Paul MH. Interruption of the atrioventricular bundle with congenital atrioventricular block. Circulation. 1971;43(5):703–10.

    Article  PubMed  CAS  Google Scholar 

  16. Morquio L. Sur une maladie infantile et familiale caracterisee par des modifications permanentes du pouls, des attaques syncopales et epileptiformes et la mort subite. Arch Med Enfants. 1901;4:467–75.

    Google Scholar 

  17. Osler W. On the so-called Stokes-Adams disease. Lancet. 1903;162(4173):516–24.

    Article  Google Scholar 

  18. Fulton ZMK, Judson CF, Norris GW. Congenital heart block occurring in a father and two children, one an infant. Am J Med Sci. 1910;140:339–48.

    Article  Google Scholar 

  19. Wallgren A, Winblad S. Congenital heart-block. Acta Paediatr. 1937;20:175–204.

    Article  Google Scholar 

  20. Wendkos MH. Familial congenital complete A-V heart blocks. Am Heart J. 1947;34:138–42.

    Article  PubMed  CAS  Google Scholar 

  21. Gazes PC, Culler RM, Taber E, et al. Congenital familial cardiac conduction defects. Circulation. 1965;32:32–4.

    Article  PubMed  CAS  Google Scholar 

  22. Combrink JMD, Snyman HW. Familial bundle branch block. Am Heart J. 1962;64:397–400.

    Article  PubMed  CAS  Google Scholar 

  23. Steenkamp WF. Familial trifascicular block. Am Heart J. 1972;84:758–60.

    Article  PubMed  CAS  Google Scholar 

  24. Brink AJ, Torrington M. Progressive familial heart block—two types. S Afr Med J. 1977;52:53–9.

    PubMed  CAS  Google Scholar 

  25. Van der Merwe PL, Weymar HW, Torrington M, Brink AJ. Progressive familial heart block. Part II. Clinical and ECG confirmation of progression-report on 4 cases. S Afr Med J. 1986;70:356–7.

    PubMed  Google Scholar 

  26. Van der Merwe PL, Weymar HW, Torrington M, Brink AJ. Progressive familial heart block (type I). A follow-up study after 10 years. S Afr Med J. 1988;73:275–6.

    PubMed  Google Scholar 

  27. Stephan E. Hereditary bundle branch system defect: survey of a family with four affected generations. Am Heart J. 1978;95:89–95.

    Article  PubMed  CAS  Google Scholar 

  28. Stephan E, de Meeus A, Bouvagnet P. Hereditary bundle branch defect: right bundle branch blocks of different causes have different morphologic characteristics. Am Heart J. 1997;133:249–56.

    Article  PubMed  CAS  Google Scholar 

  29. Brink PA, Ferreira A, Moolman JC, et al. Gene for progressive familial heart block type I maps to chromosome 19q13. Circulation. 1995;91:1633–40.

    Article  PubMed  CAS  Google Scholar 

  30. de Meeus A, Stephan E, Debrus S, Jean MK, Loiselet J, Weissenbach J, et al. An isolated cardiac conduction disease maps to chromosome 19q. Circ Res. 1995;77:735–40.

    Article  PubMed  Google Scholar 

  31. Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP. TRPM4 is a Ca2  +  −activated nonselective cation channel mediating cell membrane depolarization. Cell. 2002;109:397–407.

    Article  PubMed  CAS  Google Scholar 

  32. Nilius B, Vennekens R. From cardiac cation channels to the molecular dissection of the transient receptor potential channel TRPM4. Pflugers Arch. 2006;453:313–21.

    Article  PubMed  CAS  Google Scholar 

  33. Montell C, Birnbaumer L, Flockerzi V. The TRPchannels, a remarkably functional family. Cell. 2002;108:595–8.

    Article  PubMed  CAS  Google Scholar 

  34. Nilius B, Prenen J, Droogmans G, Voets T, Vennekens R, Freichel M, et al. Voltage dependence of the Ca2+−activated cation channel TRPM4. J Biol Chem. 2003;278:30813–20.

    Article  PubMed  CAS  Google Scholar 

  35. Chraibi A, Van den Abbeele T, Guinamard R, Teulon J. A ubiquitous nonselective cation channel in the mouse renal tubule with variable sensitivity to calcium. Pflugers Arch. 1994;429:90–7.

    Article  PubMed  CAS  Google Scholar 

  36. Lui H, El Zein L, Kruse M, et al. Gain-of-function mutations in TRPM4 cause autosomal dominant isolated cardiac conduction disease. Circ Cardiovasc Genet. 2010;4:374–85.

    Article  Google Scholar 

  37. Stallmeyer B, Zumhagen S, Denjoy I, Duthoit G, Hébert JL, Ferrer X, et al. Mutational spectrum in the Ca(2+)–activated cation channel gene TRPM4 in patients with cardiac conductance disturbances. Hum Mutat. 2012;33:109–17.

    Article  PubMed  CAS  Google Scholar 

  38. Schott JJ, Alshinawi C, Kyndt F, et al. Cardiac conduction defects associate with mutations in SCN5A. Nat Genet. 1999;23:20–1.

    Article  PubMed  CAS  Google Scholar 

  39. Probst V, Kyndt F, Potet F, et al. Haploinsufficiency in combination with aging causes SCN5A-linked hereditary Lenegre disease. J Am Coll Cardiol. 2003;41(4):643–52.

    Article  PubMed  CAS  Google Scholar 

  40. Papadatos GA, Wallerstein PM, Head CE, Ratcliff R, Brady PA, Benndorf K, et al. Slowed conduction and ventricular tachycardia after targeted disruption of the cardiac sodium channel gene Scn5a. Proc Natl Acad Sci U S A. 2002;99:6210–5.

    Article  PubMed  CAS  Google Scholar 

  41. Van Veen TA, Stein M, Royer A, et al. Impaired impulse propagation in Scn5a-knockout mice: combined contribution of excitability, connexin expression, and tissue architecture in relation to aging. Circulation. 2005;112(13):1927–35.

    Article  PubMed  Google Scholar 

  42. Royer A, van Veen TA, Le Bouter S, et al. Mouse model of SCN5A-linked hereditary Lenegre’s disease: age-related conduction slowing and myocardial fibrosis. Circulation. 2005;111(14):1738–46.

    Article  PubMed  CAS  Google Scholar 

  43. Leoni AL, Gavillet B, Rougier JS, Marionneau C, Probst V, Le Scouarnec S, et al. Variable Na(v)1.5 protein expression from the wild-type allele correlates with the penetrance of cardiac conduction disease in the Scn5a(+/−) mouse model. PLoS One. 2010;5:e9298.

    Article  PubMed  Google Scholar 

  44. Lev M. Anatomic basis for atrioventricular block. Am J Med. 1964;37:742–8.

    Article  PubMed  CAS  Google Scholar 

  45. Frustaci A, Priori SG, Pieroni M, Chimenti C, Napolitano C, Rivolta I, et al. Cardiac histological substrate in patients with clinical phenotype of Brugada syndrome. Circulation. 2005;112:3680–7.

    Article  PubMed  Google Scholar 

  46. Coronel R, Casini S, Koopmann TT, Wilms-Schopman FJ, Verkerk AO, de Groot JR, et al. Right ventricular fibrosis and conduction delay in a patient with clinical signs of Brugada syndrome: a combined electrophysiological, genetic, histopathologic, and computational study. Circulation. 2005;112:2769–77.

    Article  PubMed  Google Scholar 

  47. Tan HL, Bink-Boelkens MT, Bezzina CR, et al. A sodium-channel mutation causes isolated cardiac conduction disease. Nature. 2001;409:1043–7.

    Article  PubMed  CAS  Google Scholar 

  48. Wang DW, Viswanathan PC, Balser JR, et al. Clinical, genetic, and biophysical characterization of SCN5A mutations associated with atrioventricular conduction block. Circulation. 2002;105:341–6.

    Article  PubMed  CAS  Google Scholar 

  49. Bezzina CR, Rook MB, Groenewegen WA, et al. Compound heterozygosity for mutations (W156X and R225W) in SCN5A associated with severe cardiac conduction disturbances and ­degenerative changes in the conduction system. Circ Res. 2003;92:159–68.

    Article  PubMed  CAS  Google Scholar 

  50. Niu DM, Hwang B, Hwang HW, et al. A common SCN5A polymorphism attenuates a severe cardiac phenotype caused by a non-sense SCN5A mutation in a Chinese family with an inherited cardiac conduction defect. J Med Genet. 2006;43(10):817–21.

    Article  PubMed  CAS  Google Scholar 

  51. Viswanathan PC, Benson DW, Balser JR. A common SCN5A polymorphism modulates the biophysical effects of an SCN5A mutation. J Clin Invest. 2003;111(3):341–6.

    PubMed  CAS  Google Scholar 

  52. Groenewegen WA, Firouzi M, et al. A cardiac sodium channel mutation cosegregates with a rare connexin40 genotype in familial atrial standstill. Circ Res. 2003;92(1):14–22.

    Article  PubMed  CAS  Google Scholar 

  53. Makita N, Sasaki K, Groenewegen WA, et al. Congenital atrial standstill associated with coinheritance of a novel SCN5A mutation and connexin 40 polymorphisms. Heart Rhythm. 2005;2(10):1128–34.

    Article  PubMed  Google Scholar 

  54. McNair WP, Ku L, Taylor MR, et al. SCN5A mutation associated with dilated cardiomyopathy, conduction disorder, and arrhythmia. Circulation. 2004;110(15):2163–7.

    Article  PubMed  CAS  Google Scholar 

  55. Olson TM, Michels VV, Ballew JD, et al. Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. JAMA. 2005;293(4):447–54.

    Article  PubMed  CAS  Google Scholar 

  56. Laitinen-Forsblom PJ, Makynen P, Makynen H, et al. SCN5A mutation associated with cardiac conduction defect and atrial arrhythmias. J Cardiovasc Electrophysiol. 2006;17(5):480–5.

    Article  PubMed  Google Scholar 

  57. Watanabe H et al. Sodium channel beta1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. J Clin Invest. 2008;118:2260–8.

    PubMed  CAS  Google Scholar 

  58. Makita N, Seki A, Sumitomo N, Chkourko H, Fukuhara S, Watanabe H, et al. A connexin40 mutation associated with a malignant variant of progressive familial heart block type I. Circ Arrhythm Electrophysiol. 2012;5:163–72.

    Article  PubMed  Google Scholar 

  59. Gollob MH, Jones DL, Krahn AD, Danis L, Gong X Q, Shao Q, et al. Somatic mutations in the connexin 40 gene (GJA5) in atrial fibrillation. N Engl J Med. 2006;354:2677–88.

    Article  PubMed  CAS  Google Scholar 

  60. Thibodeau IL, Xu J, Li Q, Liu G, Lam K, Veinot JP, et al. Paradigm of genetic mosaicism and lone atrial fibrillation: physiological characterization of a connexin 43-deletion mutant identified from atrial tissue. Circulation. 2010;122:236–44.

    Article  PubMed  CAS  Google Scholar 

  61. Van Norstrand DW, Asimaki A, Rubinos C, Dolmatova E, Srinivas M, Tester DJ, et al. Connexin43 mutation causes heterogeneous gap junction loss and sudden infant death. Circulation. 2012;125:474–81.

    Article  PubMed  Google Scholar 

  62. Remme CA, Wilde AA, Bezzina CR. Cardiac sodium channel overlap syndromes: different faces of SCN5A mutations. Trends Cardiovasc Med. 2008;18:78–87.

    Article  PubMed  CAS  Google Scholar 

  63. Bezzina C, Veldkamp MW, Van Den Berg MP, et al. A single Na  +  channel mutation causing both long-QT and Brugada syndromes. Circ Res. 1999;85:1206–13.

    Article  PubMed  CAS  Google Scholar 

  64. Smits JP, Koopmann TT, Wilders R, et al. A mutation in the human cardiac sodium channel (E161K) contributes to sick sinus syndrome, conduction disease and Brugada syndrome in two families. J Mol Cell Cardiol. 2005;38:969–81.

    Article  PubMed  CAS  Google Scholar 

  65. Kyndt F, Probst V, Potet F, Demolombe S, Chevallier JC, Baro I, et al. Novel SCN5A mutation leading either to isolated cardiac conduction defect or Brugada syndrome in a large French family. Circulation. 2001;104:3081–6.

    Article  PubMed  CAS  Google Scholar 

  66. Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol. 1992;20:1391–6.

    Article  PubMed  CAS  Google Scholar 

  67. Priori SG, Napolitano C, Gasparini M, et al. Clinical and genetic heterogeneity of right bundle branch block and ST-segment elevation syndrome: a prospective evaluation of 52 families. Circulation. 2000;102:2509–15.

    Article  PubMed  CAS  Google Scholar 

  68. Smits JP, Eckardt L, Probst V, et al. Genotype-phenotype relationship in Brugada syndrome: electrocardiographic features differentiate SCN5A-­related patients from non-SCN5A-related patients. J Am Coll Cardiol. 2002;40:350–6.

    Article  PubMed  CAS  Google Scholar 

  69. Shimizu W, Antzelevitch C, Suyama K, et al. Effect of sodium channel blockers on ST segment, QRSduration, and correctedQTinterval in patients with Brugada syndrome. J Cardiovasc Electrophysiol. 2000;11:1320–9.

    Article  PubMed  CAS  Google Scholar 

  70. Probst V, Allouis M, Sacher F, et al. Progressive cardiac conduction defect is the prevailing phenotype in carriers of a Brugada syndrome SCN5A mutation. J Cardiovasc Electrophysiol. 2006;17(3):270–5.

    Article  PubMed  Google Scholar 

  71. Hong K, Brugada J, Oliva A, Berruezo-Sanchez A, et al. Value of electrocardiographic parameters and ajmaline test in the diagnosis of Brugada syndrome caused by SCN5A mutations. Circulation. 2004;110:3023–7.

    Article  PubMed  Google Scholar 

  72. Hanson EL, Jakobs PM, Keegan H, et al. Cardiac troponin T lysine 210 deletion in a family with dilated cardiomyopathy. J Card Fail. 2002;8:28–32.

    Article  PubMed  CAS  Google Scholar 

  73. Oropeza ES, Cadena CN. New phenotype of familial dilated cardiomyopathy and conduction disorders. Am Heart J. 2003;145:317–23.

    Article  PubMed  Google Scholar 

  74. Mestroni L, Rocco C, Gregori D, et al. Familial dilated cardiomyopathy: evidence for genetic and phenotypic heterogeneity. J Am Coll Cardiol. 1999;34:181–90.

    Article  PubMed  CAS  Google Scholar 

  75. Karkkainen S, Peuhkurinen k. Genetics of dilated cardiomyopathy. A comprehensive review of the known genetic mutations that have been shown to cause FDC. Ann Med. 2007;39:91–107.

    Article  PubMed  CAS  Google Scholar 

  76. Burkett EL, Hershberger RE. Clinical and genetic issues in familial dilated cardiomyopathy. J Am Coll Cardiol. 2005;45:969–81.

    Article  PubMed  CAS  Google Scholar 

  77. Fatkin D, MacRae C, Sasaki T, et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction system disease. N Engl J Med. 1999;341:1715–24.

    Article  PubMed  CAS  Google Scholar 

  78. van Berlo JH, de Voogt WG, van der Kooi AJ, et al. Meta-analysis of clinical characteristics of 299 carriers of LMNA gene mutations: do lamin A/C mutations portend a high risk of sudden death? J Mol Med. 2005;83:79–83.

    Article  PubMed  CAS  Google Scholar 

  79. Gruenbaum Y, Goldman RD, Meyuhas R, et al. The nuclear lamina and its functions in the nucleus. Int Rev Cytol. 2006;226:1–62.

    Article  Google Scholar 

  80. Shumaker DK, Kuczmarski ER, Goldman RD. The nucleoskeleton: lamins and actin are major players in essential nuclear functions. Curr Opin Cell Biol. 2003;15:358–66.

    Article  PubMed  CAS  Google Scholar 

  81. Meune C, van Berlo J, Anselme F, et al. Primary prevention of sudden death in patients with lamin A/C gene mutations. N Engl J Med. 2006;354:209–10.

    Article  PubMed  CAS  Google Scholar 

  82. Pease WE, Nordenberg A, Ladda RL. Genetic counselling in familial atrial septal defect with prolonged atrio-ventricular conduction. Circulation. 1976;53:759–62.

    Article  PubMed  CAS  Google Scholar 

  83. Schott J-J, Benson DW, Basson CT, Pease W, Silberbach GM, Moak JP, et al. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science. 1998;281:108–11.

    Article  PubMed  CAS  Google Scholar 

  84. Watanabe Y, Benson DW, Yano S, Akagi T, Yoshino M, Murray JC. Two novel frameshift mutations in NKX2.5 result in novel features including visceral inversus and sinus venosus type ASD. J Med Genet. 2002;39:807–11.

    Article  PubMed  CAS  Google Scholar 

  85. Hirayama-Yamada K, Kamisago M, Akimoto K, Aotsuka H, Nakamura Y, Tomita H, et al. Phenotypes with GATA4 or NKX2.5 mutations in familial atrial septal defect. Am J Med Genet A. 2005;135:47–52.

    PubMed  Google Scholar 

  86. Gutierrez-Roelens I, De Roy L, Ovaert C, Sluysmans T, Devriendt K, Brunner HG, et al. A novel CSX/NKX2-5 mutation causes autosomal-dominant AV block: are atrial fibrillation and syncopes part of the phenotype? Eur J Hum Genet. 2006;14:1313–6.

    Article  PubMed  CAS  Google Scholar 

  87. Gollob MH, Green MS, Tang AS, et al. Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N Engl J Med. 2001;344(24):1823–31.

    Article  PubMed  CAS  Google Scholar 

  88. Wellcome Trust Case Control Consortium, Burton PR, Clayton DG, Cardon LR, et al. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–78.

    Article  CAS  Google Scholar 

  89. Chambers JC, Zhao J, Terracciano CM, et al. Genetic variation in SCN10A influences cardiac conduction. Nat Genet. 2010;42:149–52.

    Article  PubMed  CAS  Google Scholar 

  90. Sotoodehnia N, Isaacs A, de de Bakker PI, et al. Common variants in 22 loci are associated with QRS duration and cardiac ventricular conduction. Nat Genet. 2010;42:1068–76.

    Article  PubMed  CAS  Google Scholar 

  91. Holm H, Gudbjartsson DF, Arnar DO, et al. Several common variants modulate heart rate, PR interval and QRS duration. Nat Genet. 2010;42:117–22.

    Article  PubMed  CAS  Google Scholar 

  92. Fernandez P, Moolman-Smook J, Brink P, Corfield V. A gene locus for progressive familial heart block type II (PFHBII) maps to Chromosome 1q32.2-q32.3. Hum Genet. 2005;118(1):133–7.

    Article  PubMed  CAS  Google Scholar 

  93. Kruse M, Schulze-Bahr E, Corfield V, Beckmann A, et al. Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I. J Clin Invest. 2009;119(9):2737–44.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Jacques Schott PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Schott, JJ., Charpentier, F., Le Marec, H. (2013). Progressive Cardiac Conduction Disease. In: Gussak, I., Antzelevitch, C. (eds) Electrical Diseases of the Heart. Springer, London. https://doi.org/10.1007/978-1-4471-4881-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4881-4_34

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4880-7

  • Online ISBN: 978-1-4471-4881-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics