Skip to main content

Brugada Syndrome: Cellular Mechanisms and Approaches to Therapy

  • 2903 Accesses

Abstract

The Brugada Syndrome, introduced as a new clinical entity 20 years ago, has attracted great interest because of its prevalence and association with high risk of sudden death, especially in males as they enter their third and fourth decade of life. Consensus reports published in 2002 and 2005 focused on diagnostic criteria, risk stratification and approaches to therapy. More recently, the risk stratification approaches have been the subject of controversy and debate.

Over 21 years have transpired since the introduction of the concept of phase 2 reentry, the mechanism believed to underlie development of arrhythmogenesis in BrS. Thus, the entity initially introduced as “ST segment elevation and right bundle branch block (RBBB)”, which came to be known as Brugada syndrome in 1996, evolved in the experimental laboratory and in the clinic along parallel but separate tracks. While the electrocardiographic and arrhythmic manifestations of BrS are well explained by abnormal repolarization in the right ventricular outflow track (RVOT), recent data have suggested conduction impairment in the RVOT as the basis for BrS, thus generating a debate as to the basis for the pathogenicity of the syndrome.

This review provides an overview of the clinical, genetic, molecular and cellular aspects of the Brugada syndrome and the various approaches to therapy.

Keywords

  • J Wave syndrome
  • Sudden cardiac death
  • Electrophysiology
  • Electrocardiography
  • Quinidine
  • Pharmacology

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4471-4881-4_29
  • Chapter length: 40 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-4471-4881-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Figure 29–1.
Figure 29–2.
Figure 29–3.
Figure 29–4.
Figure 29–5.
Figure 29–6.
Figure 29–7.
Figure 29–8.
Figure 29–9.
Figure 29–10.
Figure 29–11.
Figure 29–12.
Figure 29–13.

References

  1. Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome: a multicenter report. J Am Coll Cardiol. 1992;20:1391–6.

    PubMed  CAS  CrossRef  Google Scholar 

  2. Krishnan SC, Antzelevitch C. Sodium channel block produces opposite electrophysiological effects in canine ventricular epicardium and endocardium. Circ Res. 1991;69:277–91.

    PubMed  CAS  CrossRef  Google Scholar 

  3. Krishnan SC, Antzelevitch C. Flecainide-induced arrhythmia in canine ventricular epicardium. Phase 2 reentry? Circulation. 1993;87:562–72.

    PubMed  CAS  CrossRef  Google Scholar 

  4. Yan GX, Antzelevitch C. Cellular basis for the electrocardiographic J wave. Circulation. 1996;93:372–9.

    PubMed  CAS  CrossRef  Google Scholar 

  5. Miyazaki T, Mitamura H, Miyoshi S, Soejima K, Aizawa Y, Ogawa S. Autonomic and antiarrhythmic drug modulation of ST segment elevation in patients with Brugada syndrome. J Am Coll Cardiol. 1996;27:1061–70.

    PubMed  CAS  CrossRef  Google Scholar 

  6. Antzelevitch C. The Brugada syndrome. J Cardiovasc Electrophysiol. 1998;9:513–6.

    PubMed  CAS  CrossRef  Google Scholar 

  7. Wilde AA, Antzelevitch C, Borggrefe M, Brugada J, Brugada R, Brugada P, et al. Proposed diagnostic criteria for the Brugada syndrome. Eur Heart J. 2002;23:1648–54.

    PubMed  CAS  Google Scholar 

  8. Wilde AA, Antzelevitch C, Borggrefe M, Brugada J, Brugada R, Brugada P, et al. Proposed diagnostic criteria for the Brugada syndrome: consensus report. Circulation. 2002;106:2514–9.

    PubMed  CrossRef  Google Scholar 

  9. Antzelevitch C, Brugada P, Borggrefe M, Brugada J, Brugada R, Corrado D, et al. Brugada syndrome: report of the second consensus conference: endorsed by the Heart Rhythm Society and the European Heart Rhythm Association. Circulation. 2005;111:659–70.

    PubMed  CrossRef  Google Scholar 

  10. Antzelevitch C, Brugada P, Borggrefe M, Brugada J, Brugada R, Corrado D, et al. Brugada syndrome: report of the second consensus conference. Heart Rhythm. 2005;2:429–40.

    PubMed  CrossRef  Google Scholar 

  11. Viskin S, Rogowski O. Asymptomatic Brugada syndrome: a cardiac ticking time-bomb? Europace. 2007;9:707–10.

    PubMed  CrossRef  Google Scholar 

  12. Wilde AA, Viskin S. EP testing does not predict cardiac events in Brugada syndrome. Heart Rhythm. 2011;8:1598–600.

    PubMed  CrossRef  Google Scholar 

  13. Wilde AA, Viskin S. Rebuttal to EP testing predicts cardiac events in patients with Brugada syndrome. Heart Rhythm. 2011;8:1797.

    PubMed  CrossRef  Google Scholar 

  14. Brugada J, Brugada R, Brugada P. Electrophysiologic testing predicts events in Brugada syndrome patients. Heart Rhythm. 2011;8:1595–7.

    PubMed  CrossRef  Google Scholar 

  15. Brugada J, Brugada R, Brugada P. Rebuttal to EP testing does not predict cardiac events in patients with Brugada syndrome. Heart Rhythm. 2011;8:1796.

    PubMed  CrossRef  Google Scholar 

  16. Hermida JS, Lemoine JL, Aoun FB, Jarry G, Rey JL, Quiret JC. Prevalence of the Brugada syndrome in an apparently healthy population. Am J Cardiol. 2000;86:91–4.

    PubMed  CAS  CrossRef  Google Scholar 

  17. Miyasaka Y, Tsuji H, Yamada K, Tokunaga S, Saito D, Imuro Y, et al. Prevalence and mortality of the Brugada-type electrocardiogram in one city in Japan. J Am Coll Cardiol. 2001;38:771–4.

    PubMed  CAS  CrossRef  Google Scholar 

  18. Holst AG, Jensen HK, Eschen O, Henriksen FL, Kanters J, Bundgaard H, et al. Low disease prevalence and inappropriate implantable cardioverter defibrillator shock rate in Brugada syndrome: a nationwide study. Europace. 2012;14:1025–9.

    PubMed  CrossRef  Google Scholar 

  19. Antzelevitch C. Brugada syndrome. Pacing Clin Electrophysiol. 2006;29:1130–59.

    PubMed  CrossRef  Google Scholar 

  20. Brugada P, Brugada J, Brugada R. The Brugada syndrome. Card Electrophysiol Rev. 2002;6:45–8.

    PubMed  CrossRef  Google Scholar 

  21. Brugada P, Brugada J, Brugada R. Arrhythmia induction by antiarrhythmic drugs. Pacing Clin Electrophysiol. 2000;23:291–2.

    PubMed  CAS  CrossRef  Google Scholar 

  22. Brugada R, Brugada J, Antzelevitch C, Kirsch GE, Potenza D, Towbin JA, et al. Sodium channel blockers identify risk for sudden death in patients with ST-segment elevation and right bundle branch block but structurally normal hearts. Circulation. 2000;101:510–5.

    PubMed  CAS  CrossRef  Google Scholar 

  23. Antzelevitch C, Brugada R. Fever and the Brugada syndrome. Pacing Clin Electrophysiol. 2002;25:1537–9.

    PubMed  CrossRef  Google Scholar 

  24. Ikeda T, Abe A, Yusa S, Nakamura K, Ishiguro H, Mera H, et al. The full stomach test as a novel diagnostic technique for identifying patients at risk for Brugada syndrome. J Cardiovasc Electrophysiol. 2006;17:602–7.

    PubMed  CrossRef  Google Scholar 

  25. Makimoto H, Nakagawa E, Takaki H, Yamada Y, Okamura H, Noda T, et al. Augmented ST-segment elevation during recovery from exercise predicts cardiac events in patients with Brugada syndrome. J Am Coll Cardiol. 2010;56:1576–84.

    PubMed  CrossRef  Google Scholar 

  26. Mizumaki K, Fujiki A, Tsuneda T, Sakabe M, Nishida K, Sugao M, et al. Vagal activity modulates spontaneous augmentation of ST elevation in daily life of patients with Brugada syndrome. J Cardiovasc Electrophysiol. 2004;15:667–73.

    PubMed  CrossRef  Google Scholar 

  27. Morita H, Zipes DP, Morita ST, Wu J. Temperature modulation of ventricular arrhythmogenicity in a canine tissue model of Brugada syndrome. Heart Rhythm. 2007;4:188–97.

    PubMed  CrossRef  Google Scholar 

  28. Take Y, Morita H, Wu J, Nagase S, Morita S, Toh N, et al. Spontaneous electrocardiogram alterations predict ventricular fibrillation in Brugada syndrome. Heart Rhythm. 2011;8:1014–21.

    PubMed  CrossRef  Google Scholar 

  29. Richter S, Sarkozy A, Veltmann C, Chierchia GB, Boussy T, Wolpert C, et al. Variability of the diagnostic ECG pattern in an ICD patient ­population with Brugada syndrome. J Cardiovasc Electrophysiol. 2009;20:69–75.

    PubMed  CrossRef  Google Scholar 

  30. Richter S, Sarkozy A, Paparella G, Henkens S, Boussy T, Chierchia GB, et al. Number of electrocardiogram leads displaying the diagnostic coved-type pattern in Brugada syndrome: a diagnostic consensus criterion to be revised. Eur Heart J. 2010;31:1357–64.

    PubMed  CrossRef  Google Scholar 

  31. Shimizu W, Antzelevitch C, Suyama K, Kurita T, Taguchi A, Aihara N, et al. Effect of sodium channel blockers on ST segment, QRS duration, and corrected QT interval in patients with Brugada syndrome. J Cardiovasc Electrophysiol. 2000;11:1320–9.

    PubMed  CAS  CrossRef  Google Scholar 

  32. Priori SG, Napolitano C, Gasparini M, Pappone C, Della BP, Brignole M, et al. Clinical and genetic heterogeneity of right bundle branch block and ST-segment elevation syndrome: a prospective evaluation of 52 families. Circulation. 2000;102:2509–15.

    PubMed  CAS  CrossRef  Google Scholar 

  33. Wolpert C, Echternach C, Veltmann C, Antzelevitch C, Thomas GP, Sphel S, et al. Intravenous drug challenge using flecainide and ajmaline in patients with Brugada syndrome. Heart Rhythm. 2005;2:254–60.

    PubMed  CrossRef  Google Scholar 

  34. Hong K, Brugada J, Oliva A, Berruezo-Sanchez A, Potenza D, Pollevick GD, et al. Value of electrocardiographic parameters and ajmaline test in the diagnosis of Brugada syndrome caused by SCN5A mutations. Circulation. 2004;110:3023–7.

    PubMed  CrossRef  Google Scholar 

  35. Itoh H, Shimizu M, Takata S, Mabuchi H, Imoto K. A novel missense mutation in the SCN5A gene associated with Brugada syndrome bidirectionally affecting blocking actions of antiarrhythmic drugs. J Cardiovasc Electrophysiol. 2005;16:486–93.

    PubMed  CrossRef  Google Scholar 

  36. Kalla H, Yan GX, Marinchak R. Ventricular fibrillation in a patient with prominent J (Osborn) waves and ST segment elevation in the inferior electrocardiographic leads: a Brugada syndrome variant? J Cardiovasc Electrophysiol. 2000;11:95–8.

    PubMed  CAS  CrossRef  Google Scholar 

  37. Ogawa M, Kumagai K, Yamanouchi Y, Saku K. Spontaneous onset of ventricular fibrillation in Brugada syndrome with J wave and ST-segment elevation in the inferior leads. Heart Rhythm. 2005;2:97–9.

    PubMed  CrossRef  Google Scholar 

  38. Horigome H, Shigeta O, Kuga K, Isobe T, Sakakibara Y, Yamaguchi I, et al. Ventricular fibrillation during anesthesia in association with J waves in the left precordial leads in a child with coarctation of the aorta. J Electrocardiol. 2003;36:339–43.

    PubMed  CrossRef  Google Scholar 

  39. Kamakura S, Ohe T, Nakazawa K, Aizawa Y, Shimizu A, Horie M, et al. Long-term prognosis of probands with Brugada-pattern ST-elevation in leads V1-V3. Circ Arrhythm Electrophysiol. 2009;2:495–503.

    PubMed  CrossRef  Google Scholar 

  40. Nam GB, Kim YH, Antzelevitch C. Augmentation of J waves and electrical storms in patients with early repolarization. N Engl J Med. 2008;358:2078–9.

    PubMed  CAS  CrossRef  Google Scholar 

  41. Nam GB, Ko KH, Kim J, Park KM, Rhee KS, Choi KJ, et al. Mode of onset of ventricular fibrillation in patients with early repolarization pattern vs. Brugada syndrome. Eur Heart J. 2010;31:330–9.

    PubMed  CrossRef  Google Scholar 

  42. Antzelevitch C, Yan GX. J wave syndromes. Heart Rhythm. 2010;7:549–58.

    PubMed  CrossRef  Google Scholar 

  43. Shimizu W, Matsuo K, Takagi M, Tanabe Y, Aiba T, Taguchi A, et al. Body surface distribution and response to drugs of ST segment elevation in Brugada syndrome: clinical implication of eighty-seven-lead body surface potential mapping and its application to twelve-lead electrocardiograms. J Cardiovasc Electrophysiol. 2000;11:396–404.

    PubMed  CAS  CrossRef  Google Scholar 

  44. Sangwatanaroj S, Prechawat S, Sunsaneewitayakul B, Sitthisook S, Tosukhowong P, Tungsanga K. New electrocardiographic leads and the procainamide test for the detection of the Brugada sign in sudden unexplained death syndrome survivors and their relatives. Eur Heart J. 2001;22:2290–6.

    PubMed  CAS  CrossRef  Google Scholar 

  45. Shimeno K, Takagi M, Maeda K, Tatsumi H, Doi A, Yoshiyama M. Usefulness of multichannel Holter ECG recording in the third intercostal space for detecting type 1 Brugada ECG: comparison with repeated 12-lead ECGs. J Cardiovasc Electrophysiol. 2009;20:1026–31.

    PubMed  CrossRef  Google Scholar 

  46. Shin SC, Ryu S, Lee JH, Chang BJ, Shin JK, Kim HS, et al. Prevalence of the Brugada-type ECG recorded from higher intercostal spaces in healthy Korean males. Circ J. 2005;69:1064–7.

    PubMed  CrossRef  Google Scholar 

  47. Alings M, Wilde A. “Brugada” syndrome: clinical data and suggested pathophysiological mechanism. Circulation. 1999;99:666–73.

    PubMed  CAS  CrossRef  Google Scholar 

  48. Bezzina C, Veldkamp MW, van Den Berg MP, Postma AV, Rook MB, Viersma JW, et al. A single Na+ channel mutation causing both long-QT and Brugada syndromes. Circ Res. 1999;85:1206–13.

    PubMed  CAS  CrossRef  Google Scholar 

  49. Pitzalis MV, Anaclerio M, Iacoviello M, Forleo C, Guida P, Troccoli R, et al. QT-interval prolongation in right precordial leads: an additional electrocardiographic hallmark of Brugada syndrome. J Am Coll Cardiol. 2003;42:1632–7.

    PubMed  CrossRef  Google Scholar 

  50. Castro Hevia J, Antzelevitch C, Tornés Bárzaga F, Dorantes Sánchez M, Dorticós Balea F, Zayas Molina R, et al. Tpeak-Tend and Tpeak-Tend dispersion as risk factors for ventricular tachycardia/ventricular fibrillation in patients with the Brugada syndrome. J Am Coll Cardiol. 2006;47:1828–34.

    PubMed  CrossRef  Google Scholar 

  51. Smits JP, Eckardt L, Probst V, Bezzina CR, Schott JJ, Remme CA, et al. Genotype-phenotype relationship in Brugada syndrome: electrocardiographic features differentiate SCN5A-related patients from non-SCN5A-related patients. J Am Coll Cardiol. 2002;40:350–6.

    PubMed  CAS  CrossRef  Google Scholar 

  52. Morita H, Kusano KF, Miura D, Nagase S, Nakamura K, Morita ST, et al. Fragmented QRS as a marker of conduction abnormality and a predictor of prognosis of Brugada syndrome. Circulation. 2008;118:1697–704.

    PubMed  CrossRef  Google Scholar 

  53. Priori SG, Gasparini M, Napolitano C, Della BP, Ottonelli AG, Sassone B, et al. Risk stratification in Brugada syndrome: results of the PRELUDE (PRogrammed ELectrical stimUlation preDictive valuE) registry. J Am Coll Cardiol. 2012;59:37–45.

    PubMed  CrossRef  Google Scholar 

  54. Kasanuki H, Ohnishi S, Ohtuka M, Matsuda N, Nirei T, Isogai R, et al. Idiopathic ventricular fibrillation induced with vagal activity in patients without obvious heart disease. Circulation. 1997;95:2277–85.

    PubMed  CAS  CrossRef  Google Scholar 

  55. Proclemer A, Facchin D, Feruglio GA, Nucifora R. Recurrent ventricular fibrillation, right bundle-branch block and persistent ST segment elevation in V1-V3: a new arrhythmia syndrome? A clinical case report. G Ital Cardiol. 1993;23:1211–8.

    PubMed  CAS  Google Scholar 

  56. Makiyama T, Akao M, Tsuji K, Doi T, Ohno S, Takenaka K, et al. High risk for bradyarrhythmic complications in patients with Brugada syndrome caused by SCN5A gene mutations. J Am Coll Cardiol. 2005;46:2100–6.

    PubMed  CAS  CrossRef  Google Scholar 

  57. Scornik FS, Desai M, Brugada R, Guerchicoff A, Pollevick GD, Antzelevitch C, et al. Functional expression of “cardiac-type” Nav1.5 sodium channel in canine intracardiac ganglia. Heart Rhythm. 2006;3:842–50.

    PubMed  CrossRef  Google Scholar 

  58. Patruno N, Pontillo D. Brugada syndrome and vasovagal syncope. Pacing Clin Electrophysiol. 2006;29:215.

    PubMed  CrossRef  Google Scholar 

  59. Shimada M, Miyazaki T, Miyoshi S, Soejima K, Hori S, Mitamura H, et al. Sustained monomorphic ventricular tachycardia in a patient with Brugada syndrome. Jpn Circ J. 1996;60:364–70.

    PubMed  CAS  CrossRef  Google Scholar 

  60. Pinar BE, Garcia-Alberola A, Martinez SJ, Sanchez Munoz JJ, Valdes CM. Spontaneous sustained monomorphic ventricular tachycardia after administration of ajmaline in a patient with Brugada syndrome. Pacing Clin Electrophysiol. 2000;23:407–9.

    CrossRef  Google Scholar 

  61. Dinckal MH, Davutoglu V, Akdemir I, Soydinc S, Kirilmaz A, Aksoy M. Incessant monomorphic ventricular tachycardia during febrile illness in a patient with Brugada syndrome: fatal electrical storm. Europace. 2003;5:257–61.

    PubMed  CAS  CrossRef  Google Scholar 

  62. Mok NS, Chan NY. Brugada syndrome presenting with sustained monomorphic ventricular tachycardia. Int J Cardiol. 2004;97:307–9.

    PubMed  CrossRef  Google Scholar 

  63. Probst V, Evain S, Gournay V, Marie A, Schott JJ, Boisseau P, et al. Monomorphic ventricular tachycardia due to brugada syndrome successfully treated by hydroquinidine therapy in a 3-year-old child. J Cardiovasc Electrophysiol. 2006;17:97–100.

    PubMed  CrossRef  Google Scholar 

  64. Sastry BK, Narasimhan C, Soma Raju B. Brugada syndrome with monomorphic ventricular tachycardia in a one-year-old child. Indian Heart J. 2001;53:203–5.

    PubMed  CAS  Google Scholar 

  65. Remme CA, Wever EFD, Wilde AAM, Derksen R, Hauer RNW. Diagnosis and long-term follow-up of Brugada syndrome in patients with idiopathic ventricular fibrillation. Eur Heart J. 2001;22:400–9.

    PubMed  CAS  CrossRef  Google Scholar 

  66. Brugada J, Brugada R, Antzelevitch C, Towbin J, Nademanee K, Brugada P. Long-term follow-up of individuals with the electrocardiographic pattern of right bundle-branch block and ST-segment elevation in precordial leads V1 to V3. Circulation. 2002;105:73–8.

    PubMed  CrossRef  Google Scholar 

  67. Priori SG, Napolitano C, Gasparini M, Pappone C, Della BP, Giordano U, et al. Natural history of Brugada syndrome: insights for risk stratification and management. Circulation. 2002;105:1342–7.

    PubMed  CrossRef  Google Scholar 

  68. Brugada P, Brugada R, Brugada J. Patients with an asymptomatic Brugada electrocardiogram should undergo pharmacological and electrophysical testing. Circulation. 2005;112:279–85.

    PubMed  CrossRef  Google Scholar 

  69. Priori SG, Napolitano C. Management of Patients with Brugada syndrome should not be based on programmed electrical stimulation. Circulation. 2005;112:285–91.

    CrossRef  Google Scholar 

  70. Eckardt L, Probst V, Smits JP, Bahr ES, Wolpert C, Schimpf R, et al. Long-term prognosis of individuals with right precordial ST-segment-elevation Brugada syndrome. Circulation. 2005;111:257–63.

    PubMed  CrossRef  Google Scholar 

  71. Atarashi H, Ogawa S, Idiopathic Ventricular Fibrillation Investigators. New ECG criteria for high-risk Brugada syndrome. Circ J. 2003;67:8–10.

    PubMed  CrossRef  Google Scholar 

  72. Junttila MJ, Brugada P, Hong K, Lizotte E, de Zutter M, Sarkozy A, et al. Differences in 12-lead electrocardiogram between symptomatic and asymptomatic Brugada syndrome patients. J Cardiovasc Electrophysiol. 2008;19:380–3.

    PubMed  CrossRef  Google Scholar 

  73. Morita H, Takenaka-Morita S, Fukushima-Kusano K, Kobayashi M, Nagase S, Kakishita M, et al. Risk stratification for asymptomatic patients with brugada syndrome. Circ J. 2003;67:312–6.

    PubMed  CrossRef  Google Scholar 

  74. Viskin S. Inducible ventricular fibrillation in the Brugada syndrome: diagnostic and prognostic implications. J Cardiovasc Electrophysiol. 2003;14:458–60.

    PubMed  CrossRef  Google Scholar 

  75. Brugada J, Brugada R, Brugada P. Right bundle-branch block and ST-segment elevation in leads V1 through V3. A marker for sudden death in patients without demonstrable structural heart disease. Circulation. 1998;97:457–60.

    PubMed  CAS  CrossRef  Google Scholar 

  76. Kanda M, Shimizu W, Matsuo K, Nagaya N, Taguchi A, Suyama K, et al. Electrophysiologic characteristics and implications of induced ventricular fibrillation in symptomatic patients with Brugada syndrome. J Am Coll Cardiol. 2002;39:1799–805.

    PubMed  CrossRef  Google Scholar 

  77. Brugada J, Brugada R, Brugada P. Determinants of sudden cardiac death in individuals with the electrocardiographic pattern of Brugada syndrome and no previous cardiac arrest. Circulation. 2003;108:3092–6.

    PubMed  CrossRef  Google Scholar 

  78. Eckardt L, Kirchhof P, Johna R, Haverkamp W, Breithardt G, Borggrefe M. Wolff-Parkinson-White syndrome associated with Brugada syndrome. Pacing Clin Electrophysiol. 2001;24:1423–4.

    PubMed  CAS  CrossRef  Google Scholar 

  79. Carlsson J, Erdogan A, Schulte B, Neuzner J, Pitschner HF. Possible role of epicardial left ventricular programmed stimulation in Brugada syndrome. Pacing Clin Electrophysiol. 2001;24:247–9.

    PubMed  CAS  CrossRef  Google Scholar 

  80. Gehi AK, Duong TD, Metz LD, Gomes JA, Mehta D. Risk stratification of individuals with the brugada electrocardiogram: a meta-analysis. J Cardiovasc Electrophysiol. 2006;17:577–83.

    PubMed  CrossRef  Google Scholar 

  81. Paul M, Gerss J, Schulze-Bahr E, Wichter T, Vahlhaus C, Wilde AA, et al. Role of programmed ventricular stimulation in patients with Brugada syndrome: a meta-analysis of worldwide published data. Eur Heart J. 2007;28:2126–33.

    PubMed  CrossRef  Google Scholar 

  82. Yamagata K, Horie M, Ogawa S, Aizawa Y, Kusano KF, Ohe T, et al. Clinical phenotype and prognosis of probands with Brugada syndrome in relation to SCN5A mutation Japanese Brugada Syndrome Multicenter Registry. Circulation. 2009;120:S697.

    Google Scholar 

  83. Probst V, Veltmann C, Eckardt L, Meregalli PG, Gaita F, Tan HL, et al. Long-term prognosis of patients diagnosed with Brugada syndrome: results from the FINGER Brugada syndrome registry. Circulation. 2010;121:635–43.

    PubMed  CAS  CrossRef  Google Scholar 

  84. Makimoto H, Kamakura S, Aihara N, Noda T, Nakajima I, Yokoyama T, et al. Clinical impact of the number of extrastimuli in programmed electrical stimulation in patients with Brugada type 1 electrocardiogram. Heart Rhythm. 2012;9(2):242–8.

    PubMed  CAS  CrossRef  Google Scholar 

  85. Chen Q, Kirsch GE, Zhang D, Brugada R, Brugada J, Brugada P, et al. Genetic basis and molecular mechanisms for idiopathic ventricular fibrillation. Nature. 1998;392:293–6.

    PubMed  CAS  CrossRef  Google Scholar 

  86. Antzelevitch C, Viskin S. Brugada syndrome: cellular mechanisms and approached to therapy. In: Gussak I, Antzelevitch C, editors. Electrical diseases of the heart: genetics, mechanisms, treatment, prevention. London: Springer; 2008. p. 500–35.

    CrossRef  Google Scholar 

  87. Grant AO, Carboni MP, Neplioueva V, Starmer CF, Memmi M, Napolitano C, et al. Long QT syndrome, Brugada syndrome, and conduction system disease are linked to a single sodium channel mutation. J Clin Invest. 2002;110:1201–9.

    PubMed  CAS  Google Scholar 

  88. Kapplinger JD, Tester DJ, Alders M, Benito B, Berthet M, Brugada J, et al. An international compendium of mutations in the SCN5A encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm. 2010;7:33–46.

    PubMed  CrossRef  Google Scholar 

  89. Balser JR. The cardiac sodium channel: gating function and molecular pharmacology. J Mol Cell Cardiol. 2001;33:599–613.

    PubMed  CAS  CrossRef  Google Scholar 

  90. Schulze-Bahr E, Eckardt L, Breithardt G, Seidl K, Wichter T, Wolpert C, et al. Sodium channel gene (SCN5A) mutations in 44 index patients with Brugada syndrome: different incidences in familial and sporadic disease. Hum Mutat. 2003;21:651–2.

    PubMed  CrossRef  CAS  Google Scholar 

  91. Bezzina CR, Wilde AA, Roden DM. The molecular genetics of arrhythmias. Cardiovasc Res. 2005;67:343–6.

    PubMed  CAS  CrossRef  Google Scholar 

  92. Tan HL, Bezzina CR, Smits JP, Verkerk AO, Wilde AA. Genetic control of sodium channel function. Cardiovasc Res. 2003;57:961–73.

    PubMed  CAS  CrossRef  Google Scholar 

  93. Antzelevitch C, Brugada P, Brugada J, Brugada R. Brugada syndrome: from cell to bedside. Curr Probl Cardiol. 2005;30:9–54.

    PubMed  CrossRef  Google Scholar 

  94. Dumaine R, Towbin JA, Brugada P, Vatta M, Nesterenko DV, Nesterenko VV, et al. Ionic mechanisms responsible for the electrocardiographic phenotype of the Brugada syndrome are temperature dependent. Circ Res. 1999;85:803–9.

    PubMed  CAS  CrossRef  Google Scholar 

  95. Saura D, Garcia-Alberola A, Carrillo P, Pascual D, Martinez-Sanchez J, Valdes M. Brugada-like electrocardiographic pattern induced by fever. Pacing Clin Electrophysiol. 2002;25:856–9.

    PubMed  CrossRef  Google Scholar 

  96. Porres JM, Brugada J, Urbistondo V, Garcia F, Reviejo K, Marco P. Fever unmasking the Brugada syndrome. Pacing Clin Electrophysiol. 2002;25:1646–8.

    PubMed  CrossRef  Google Scholar 

  97. Mok NS, Priori SG, Napolitano C, Chan NY, Chahine M, Baroudi G. A newly characterized SCN5A mutation underlying Brugada syndrome unmasked by hyperthermia. J Cardiovasc Electrophysiol. 2003;14:407–11.

    PubMed  CrossRef  Google Scholar 

  98. Ortega-Carnicer J, Benezet J, Ceres F. Fever-induced ST-segment elevation and T-wave alternans in a patient with Brugada syndrome. Resuscitation. 2003;57:315–7.

    PubMed  CrossRef  Google Scholar 

  99. Patruno N, Pontillo D, Achilli A, Ruggeri G, Critelli G. Electrocardiographic pattern of Brugada syndrome disclosed by a febrile illness: clinical and therapeutic implications. Europace. 2003;5:251–5.

    PubMed  CAS  CrossRef  Google Scholar 

  100. Peng J, Cui YK, Yuan FH, Yi SD, Chen ZM, Meng SR. Fever and Brugada syndrome: report of 21 cases. Di Yi Jun Yi Da Xue Xue Bao. 2005;25:432–4.

    PubMed  Google Scholar 

  101. Dulu A, Pastores SM, McAleer E, Voigt L, Halpern NA. Brugada electrocardiographic pattern in a postoperative patient. Crit Care Med. 2005;33:1634–7.

    PubMed  CrossRef  Google Scholar 

  102. Aramaki K, Okumura H, Shimizu M. Chest pain and ST elevation associated with fever in patients with asymptomatic Brugada syndrome fever and chest pain in Brugada syndrome. Int J Cardiol. 2005;103:338–9.

    PubMed  CrossRef  Google Scholar 

  103. Hong K, Guerchicoff A, Pollevick GD, Oliva A, Dumaine R, de Zutter M, et al. Cryptic 5′ splice site activation in SCN5A associated with Brugada syndrome. J Mol Cell Cardiol. 2005;38:555–60.

    PubMed  CAS  CrossRef  Google Scholar 

  104. Bezzina CR, Shimizu W, Yang P, Koopmann TT, Tanck MW, Miyamoto Y, et al. Common sodium channel promoter haplotype in Asian subjects underlies variability in cardiac conduction. Circulation. 2006;113:338–44.

    PubMed  CAS  CrossRef  Google Scholar 

  105. Antzelevitch C, Pollevick GD, Cordeiro JM, Casis O, Sanguinetti MC, Aizawa Y, et al. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation. 2007;115:442–9.

    PubMed  CrossRef  Google Scholar 

  106. Burashnikov E, Pfeiffer R, Barajas-Martinez H, Delpon E, Hu D, Desai M, et al. Mutations in the cardiac L-type calcium channel associated J wave syndrome and sudden cardiac death. Heart Rhythm. 2010;7:1872–82.

    PubMed  CrossRef  Google Scholar 

  107. London B, Michalec M, Mehdi H, Zhu X, Kerchner L, Sanyal S, et al. Mutation in glycerol-3-phosphate dehydrogenase 1 like gene (GPD1-L) decreases cardiac Na+ current and causes inherited arrhythmias. Circulation. 2007;116:2260–8.

    PubMed  CAS  CrossRef  Google Scholar 

  108. Watanabe H, Koopmann TT, Le Scouarnec S, Yang T, Ingram CR, Schott JJ, et al. Sodium channel β1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. J Clin Invest. 2008;118:2260–8.

    PubMed  CAS  Google Scholar 

  109. Delpón E, Cordeiro JM, Núñez L, Thomsen PEB, Guerchicoff A, Pollevick GD, et al. Functional effects of KCNE3 mutation and its role in the development of Brugada syndrome. Circ Arrhythm Electrophysiol. 2008;1:209–18.

    PubMed  CrossRef  CAS  Google Scholar 

  110. Medeiros-Domingo A, Tan BH, Crotti L, Tester DJ, Eckhardt L, Cuoretti A, et al. Gain-of-function mutation S422L in the KCNJ8-encoded cardiac K(ATP) channel Kir6.1 as a pathogenic substrate for J-wave syndromes. Heart Rhythm. 2010;7:1466–71.

    PubMed  CrossRef  Google Scholar 

  111. Giudicessi JR, Ye D, Tester DJ, Crotti L, Mugione A, Nesterenko VV, et al. Transient outward current (Ito) gain-of-function mutations in the KCND3-encoded Kv4.3 potassium channel and Brugada syndrome. Heart Rhythm. 1032;8:1024.

    CrossRef  Google Scholar 

  112. Cranefield PF, Hoffman BF. Conduction of the cardiac impulse. II. Summation and inhibition. Circ Res. 1971;28:220–33.

    PubMed  CAS  CrossRef  Google Scholar 

  113. Kattygnarath D, Maugenre S, Neyroud N, Duthoit G, Denjoy I, Martins RP, et al. MOG1 mutations associated with Brugada syndrome electrocardiogram pattern. Circulation. 2009;120:S686 (Abstract).

    Google Scholar 

  114. Kattygnarath D, Maugenre S, Neyroud N, Balse E, Ichai C, Denjoy I, et al. MOG1: a new susceptibility gene for Brugada syndrome. Circ Cardiovasc Genet. 2011;4:261–8.

    PubMed  CAS  CrossRef  Google Scholar 

  115. Tester DJ, Ackerman MJ. Genetic testing for potentially lethal, highly treatable inherited cardiomyopathies/channelopathies in clinical practice. Circulation. 2011;123:1021–37.

    PubMed  CrossRef  Google Scholar 

  116. Antzelevitch C, Sicouri S, Litovsky SH, Lukas A, Krishnan SC, DiDiego JM, et al. Heterogeneity within the ventricular wall. Electrophysiology and pharmacology of epicardial, endocardial, and M cells. Circ Res. 1991;69:1427–49.

    PubMed  CAS  CrossRef  Google Scholar 

  117. Antzelevitch C, Shimizu W, Yan GX, Sicouri S, Weissenburger J, Nesterenko VV, et al. The M cell: its contribution to the ECG and to normal and abnormal electrical function of the heart. J Cardiovasc Electrophysiol. 1999;10:1124–52.

    PubMed  CAS  CrossRef  Google Scholar 

  118. Litovsky SH, Antzelevitch C. Transient outward current prominent in canine ventricular epicardium but not endocardium. Circ Res. 1988;62:116–26.

    PubMed  CAS  CrossRef  Google Scholar 

  119. Liu DW, Gintant GA, Antzelevitch C. Ionic bases for electrophysiological distinctions among epicardial, midmyocardial, and endocardial myocytes from the free wall of the canine left ventricle. Circ Res. 1993;72:671–87.

    PubMed  CAS  CrossRef  Google Scholar 

  120. Furukawa T, Myerburg RJ, Furukawa N, Bassett AL, Kimura S. Differences in transient outward currents of feline endocardial and epicardial myocytes. Circ Res. 1990;67:1287–91.

    PubMed  CAS  CrossRef  Google Scholar 

  121. Fedida D, Giles WR. Regional variations in action potentials and transient outward current in myocytes isolated from rabbit left ventricle. J Physiol. 1991;442:191–209.

    PubMed  CAS  Google Scholar 

  122. Clark RB, Bouchard RA, Salinas-Stefanon E, Sanchez-Chapula J, Giles WR. Heterogeneity of action potential waveforms and potassium currents in rat ventricle. Cardiovasc Res. 1993;27:1795–9.

    PubMed  CAS  CrossRef  Google Scholar 

  123. Wettwer E, Amos GJ, Posival H, Ravens U. Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin. Circ Res. 1994;75:473–82.

    PubMed  CAS  CrossRef  Google Scholar 

  124. Nabauer M, Beuckelmann DJ, Uberfuhr P, Steinbeck G. Regional differences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle. Circulation. 1996;93:168–77.

    PubMed  CAS  CrossRef  Google Scholar 

  125. Glukhov AV, Fedorov VV, Lou Q, Ravikumar VK, Kalish PW, Schuessler RB, et al. Transmural dispersion of repolarization in failing and nonfailing human ventricle. Circ Res. 2010;106:981–91.

    PubMed  CAS  CrossRef  Google Scholar 

  126. Antzelevitch C. M cells in the human heart. Circ Res. 2010;106:815–7.

    PubMed  CAS  CrossRef  Google Scholar 

  127. Di Diego JM, Sun ZQ, Antzelevitch C. Ito and action potential notch are smaller in left vs. right canine ventricular epicardium. Am J Physiol. 1996;271:H548–61.

    PubMed  Google Scholar 

  128. Volders PG, Sipido KR, Carmeliet E, Spatjens RL, Wellens HJ, Vos MA. Repolarizing K+ currents ITO1 and IKs are larger in right than left canine ventricular midmyocardium. Circulation. 1999;99:206–10.

    PubMed  CAS  CrossRef  Google Scholar 

  129. Zicha S, Xiao L, Stafford S, Cha TJ, Han W, Varro A, et al. Transmural expression of transient outward potassium current subunits in normal and failing canine and human hearts. J Physiol. 2004;561:735–48.

    PubMed  CAS  CrossRef  Google Scholar 

  130. Rosati B, Pan Z, Lypen S, Wang HS, Cohen I, Dixon JE, et al. Regulation of KChIP2 potassium channel beta subunit gene expression underlies the gradient of transient outward current in canine and human ventricle. J Physiol. 2001;533:119–25.

    PubMed  CAS  CrossRef  Google Scholar 

  131. Costantini DL, Arruda EP, Agarwal P, Kim KH, Zhu Y, Zhu W, et al. The homeodomain transcription factor Irx5 establishes the mouse cardiac ventricular repolarization gradient. Cell. 2005;123:347–58.

    PubMed  CAS  CrossRef  Google Scholar 

  132. Takano M, Noma A. Distribution of the isoprenaline-induced chloride current in rabbit heart. Pflugers Arch. 1992;420:223–6.

    PubMed  CAS  CrossRef  Google Scholar 

  133. Zygmunt AC. Intracellular calcium activates chloride current in canine ventricular myocytes. Am J Physiol. 1994;267:H1984–95.

    PubMed  CAS  Google Scholar 

  134. Cordeiro JM, Greene L, Heilmann C, Antzelevitch D, Antzelevitch C. Transmural heterogeneity of calcium activity and mechanical function in the canine left ventricle. Am J Physiol Heart Circ Physiol. 2004;286:H1471–9.

    PubMed  CAS  CrossRef  Google Scholar 

  135. Banyasz T, Fulop L, Magyar J, Szentandrassy N, Varro A, Nanasi PP. Endocardial versus epicardial differences in L-type calcium current in canine ventricular myocytes studied by action potential voltage clamp. Cardiovasc Res. 2003;58:66–75.

    PubMed  CAS  CrossRef  Google Scholar 

  136. Wang HS, Cohen IS. Calcium channel heterogeneity in canine left ventricular myocytes. J Physiol. 2003;547:825–33.

    PubMed  CAS  CrossRef  Google Scholar 

  137. Sicouri S, Antzelevitch C. A subpopulation of cells with unique electrophysiological properties in the deep subepicardium of the canine ventricle. The M cell. Circ Res. 1991;68:1729–41.

    PubMed  CAS  CrossRef  Google Scholar 

  138. Anyukhovsky EP, Sosunov EA, Rosen MR. Regional differences in electrophysiologic properties of epicardium, midmyocardium and endocardium: in vitro and in vivo correlations. Circulation. 1996;94:1981–8.

    PubMed  CAS  CrossRef  Google Scholar 

  139. Liu DW, Antzelevitch C. Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. A weaker IKs contributes to the longer action potential of the M cell. Circ Res. 1995;76:351–65.

    PubMed  CAS  CrossRef  Google Scholar 

  140. Zygmunt AC, Eddlestone GT, Thomas GP, Nesterenko VV, Antzelevitch C. Larger late sodium conductance in M cells contributes to electrical heterogeneity in canine ventricle. Am J Physiol. 2001;281:H689–97.

    CAS  Google Scholar 

  141. Zygmunt AC, Goodrow RJ, Antzelevitch C. INaCa contributes to electrical heterogeneity within the canine ventricle. Am J Physiol Heart Circ Physiol. 2000;278:H1671–8.

    PubMed  CAS  Google Scholar 

  142. Brahmajothi MV, Morales MJ, Reimer KA, Strauss HC. Regional localization of HERG, the channel protein responsible for the rapid component of the delayed rectifier, K+ current in the ferret heart. Circ Res. 1997;81:128–35.

    PubMed  CAS  CrossRef  Google Scholar 

  143. Clements SD, Hurst JW. Diagnostic value of ECG abnormalities observed in subjects accidentally exposed to cold. Am J Cardiol. 1972;29:729–34.

    PubMed  CrossRef  Google Scholar 

  144. Thompson R, Rich J, Chmelik F, Nelson WL. Evolutionary changes in the electrocardiogram of severe progressive hypothermia. J Electrocardiol. 1977;10:67–70.

    PubMed  CAS  CrossRef  Google Scholar 

  145. RuDusky BM. The electrocardiogram in hypothermia-the J wave and the Brugada syndrome. Am J Cardiol. 2004;93:671–2.

    PubMed  CrossRef  Google Scholar 

  146. Kraus F. Ueber die wirkung des kalziums auf den kreislauf. Dtsch Med Wochenschr. 1920;46:201–3.

    CrossRef  Google Scholar 

  147. Sridharan MR, Horan LG. Electrocardiographic J wave of hypercalcemia. Am J Cardiol. 1984;54:672–3.

    PubMed  CAS  CrossRef  Google Scholar 

  148. Antzelevitch C, Sicouri S, Lukas A, Nesterenko VV, Liu DW, Di Diego JM. Regional differences in the electrophysiology of ventricular cells: physiological and clinical implications. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology: from cell to bedside. 2nd ed. Philadelphia: W.B. Saunders Co; 1994. p. 228–45.

    Google Scholar 

  149. Eagle K. Images in clinical medicine. Osborn waves of hypothermia. N Engl J Med. 1994;10:680.

    CrossRef  Google Scholar 

  150. Emslie-Smith D, Sladden GE, Stirling GR. The significance of changes in the electrocardiogram in hypothermia. Br Heart J. 1959;21:343–51.

    PubMed  CAS  CrossRef  Google Scholar 

  151. Osborn JJ. Experimental hypothermia: respiratory and blood pH changes in relation to cardiac function. Am J Physiol. 1953;175:389–98.

    PubMed  CAS  Google Scholar 

  152. Sridharan MR, Johnson JC, Horan LG, Sohl GS, Flowers NC. Monophasic action potentials in hypercalcemic and hypothermic “J” waves-a comparative study. Am Fed Clin Res. 1983;31:219.

    Google Scholar 

  153. Di Diego JM, Antzelevitch C. High [Ca2+]-induced electrical heterogeneity and extrasystolic activity in isolated canine ventricular epicardium. Phase 2 reentry. Circulation. 1994;89:1839–50.

    PubMed  CrossRef  Google Scholar 

  154. Yan GX, Antzelevitch C. Cellular basis for the Brugada syndrome and other mechanisms of arrhythmogenesis associated with ST segment elevation. Circulation. 1999;100:1660–6.

    PubMed  CAS  CrossRef  Google Scholar 

  155. Antzelevitch C, Yan GX. Cellular and ionic mechanisms responsible for the Brugada syndrome. J Electrocardiol. 2000;33(Suppl):33–9.

    PubMed  CrossRef  Google Scholar 

  156. Yan GX, Lankipalli RS, Burke JF, Musco S, Kowey PR. Ventricular repolarization components on the electrocardiogram: cellular basis and clinical significance. J Am Coll Cardiol. 2003;42:401–9.

    PubMed  CrossRef  Google Scholar 

  157. Fish JM, Antzelevitch C. Role of sodium and calcium channel block in unmasking the Brugada syndrome. Heart Rhythm. 2004;1:210–7.

    PubMed  CrossRef  Google Scholar 

  158. Morita H, Morita ST, Nagase S, Banba K, Nishii N, Tani Y, et al. Ventricular arrhythmia induced by sodium channel blocker in patients with Brugada syndrome. J Am Coll Cardiol. 2003;42:1624–31.

    PubMed  CAS  CrossRef  Google Scholar 

  159. Gussak I, Antzelevitch C, Bjerregaard P, Towbin JA, Chaitman BR. The Brugada syndrome: clinical, electrophysiologic and genetic aspects. J Am Coll Cardiol. 1999;33:5–15.

    PubMed  CAS  CrossRef  Google Scholar 

  160. Di Diego JM, Antzelevitch C. Pinacidil-induced electrical heterogeneity and extrasystolic activity in canine ventricular tissues. Does activation of ATP-regulated potassium current promote phase 2 reentry? Circulation. 1993;88:1177–89.

    PubMed  CrossRef  Google Scholar 

  161. Antzelevitch C, Sicouri S, Lukas A, Di Diego JM, Nesterenko VV, Liu DW, et al. Clinical implications of electrical heterogeneity in the heart: the electrophysiology and pharmacology of epicardial, M, and endocardial cells. In: Podrid PJ, Kowey PR, editors. Cardiac arrhythmia: mechanism, diagnosis and management. Baltimore: William & Wilkins; 1995. p. 88–107.

    Google Scholar 

  162. Lukas A, Antzelevitch C. Phase 2 reentry as a mechanism of initiation of circus movement reentry in canine epicardium exposed to simulated ischemia. Cardiovasc Res. 1996;32:593–603.

    PubMed  CAS  Google Scholar 

  163. Thomsen PE, Joergensen RM, Kanters JK, Jensen TJ, Haarbo J, Hagemann A, et al. Phase 2 reentry in man. Heart Rhythm. 2005;2:797–803.

    CrossRef  Google Scholar 

  164. Antzelevitch C. In vivo human demonstration of phase 2 reentry. Heart Rhythm. 2005;2:804–6.

    PubMed  CrossRef  Google Scholar 

  165. Postema PG, van Dessel PF, Kors JA, Linnenbank AC, van Harpen G, Ritsema van Eck HJ, et al. Local depolarization abnormalities are the dominant pathophysiologic mechanism for type 1 electrocardiogram in Brugada syndrome: a study of electrocardiograms, vectorcardiograms, and body surface potential maps during ajmaline provocation. J Am Coll Cardiol. 2010;55:789–97.

    PubMed  CrossRef  Google Scholar 

  166. Nademanee K, Veerakul G, Chandanamattha P, Chaothawee L, Ariyachaipanich A, Jirasirirojanakorn K, et al. Prevention of ventricular fibrillation episodes in Brugada syndrome by catheter ablation over the anterior right ventricular outflow tract epicardium. Circulation. 2011;123:1270–9.

    PubMed  CrossRef  Google Scholar 

  167. Wilde AA, Postema PG, Di Diego JM, Viskin S, Morita H, Fish JM, et al. The pathophysiological mechanism underlying Brugada syndrome: depolarization versus repolarization. J Mol Cell Cardiol. 2010;49:543–53.

    PubMed  CAS  CrossRef  Google Scholar 

  168. Futterman LG, Lemberg L. Brugada. Am J Crit Care. 2001;10:360–4.

    PubMed  CAS  Google Scholar 

  169. Fujiki A, Usui M, Nagasawa H, Mizumaki K, Hayashi H, Inoue H. ST segment elevation in the right precordial leads induced with class IC antiarrhythmic drugs: insight into the mechanism of Brugada syndrome. J Cardiovasc Electrophysiol. 1999;10:214–8.

    PubMed  CAS  CrossRef  Google Scholar 

  170. Antzelevitch C. Late potentials and the Brugada syndrome. J Am Coll Cardiol. 2002;39:1996–9.

    PubMed  CrossRef  Google Scholar 

  171. Nagase S, Kusano KF, Morita H, Fujimoto Y, Kakishita M, Nakamura K, et al. Epicardial electrogram of the right ventricular outflow tract in patients with the Brugada syndrome: using the epicardial lead. J Am Coll Cardiol. 2002;39:1992–5.

    PubMed  CrossRef  Google Scholar 

  172. Eckardt L, Bruns HJ, Paul M, Kirchhof P, Schulze-Bahr E, Wichter T, et al. Body surface area of ST elevation and the presence of late potentials correlate to the inducibility of ventricular tachyarrhythmias in Brugada syndrome. J Cardiovasc Electrophysiol. 2002;13:742–9.

    PubMed  CrossRef  Google Scholar 

  173. Ikeda T, Takami M, Sugi K, Mizusawa Y, Sakurada H, Yoshino H. Noninvasive risk stratification of subjects with a brugada-type electrocardiogram and no history of cardiac arrest. Ann Noninvasive Electrocardiol. 2005;10:396–403.

    PubMed  CrossRef  Google Scholar 

  174. Mizobuchi M, Enjoji Y, Nakamura S, Muranishi H, Utsunomiya M, Funatsu A, et al. Ventricular late potential in patients with apparently normal electrocardiogram; predictor of Brugada syndrome. Pacing Clin Electrophysiol. 2010;33:266–73.

    PubMed  CrossRef  Google Scholar 

  175. Takagi M, Aihara N, Kuribayashi S, Taguchi A, Shimizu W, Kurita T, et al. Localized right ventricular morphological abnormalities detected by electron-beam computed tomography represent arrhythmogenic substrates in patients with the Brugada syndrome. Eur Heart J. 2001;22:1032–41.

    PubMed  CAS  CrossRef  Google Scholar 

  176. Antzelevitch C. Brugada syndrome: historical perspectives and observations. Eur Heart J. 2002;23:676–8.

    PubMed  CAS  CrossRef  Google Scholar 

  177. Esperer HD, Hoos O, Hottenrott K. Syncope due to Brugada syndrome in a young athlete. Br J Sports Med. 2007;41:180–1.

    PubMed  CrossRef  Google Scholar 

  178. Guevara-Valdivia ME, Iturralde Torres P, De Micheli A, Colin Lizalde L, Medeiros Domingo A, Gonzalez-Hermosillo JA. Electrocardiographic changes during stress test in a patient with “Brugada syndrome”. Arch Cardiol Mex. 2001;71:66–72.

    PubMed  CAS  Google Scholar 

  179. Stix G, Bella PD, Carbucicchio C, Schmidinger H. Spatial and temporal heterogeneity of depolarization and repolarization may complicate implantable cardioverter defibrillator therapy in Brugada syndrome. J Cardiovasc Electrophysiol. 2000;11:516–21.

    PubMed  CAS  CrossRef  Google Scholar 

  180. Amin AS, de Groot EAA, Ruijter JM, Wilde AAM, Tan HT. Exercise-induced ECG changes in Brugada syndrome. Circ Arrhythm Electrophysiol. 2009;2:531–9.

    PubMed  CrossRef  Google Scholar 

  181. Das MK, El Masry H. Fragmented QRS and other depolarization abnormalities as a predictor of mortality and sudden cardiac death. Curr Opin Cardiol. 2010;25:59–64.

    PubMed  CrossRef  Google Scholar 

  182. Antzelevitch C, Brugada P, Brugada J, Brugada R, Shimizu W, Gussak I, et al. Brugada syndrome: a decade of progress. Circ Res. 2002;91:1114–9.

    PubMed  CAS  CrossRef  Google Scholar 

  183. Kurita T, Shimizu W, Inagaki M, Suyama K, Taguchi A, Satomi K, et al. The electrophysiologic mechanism of ST-segment elevation in Brugada syndrome. J Am Coll Cardiol. 2002;40:330–4.

    PubMed  CrossRef  Google Scholar 

  184. Belhassen B, Viskin S. Pharmacologic approach to therapy of Brugada syndrome: quinidine as an alternative to ICD therapy? In: Antzelevitch C, Brugada P, Brugada J, Brugada R, editors. The Brugada syndrome: from bench to bedside. Oxford: Blackwell Futura; 2004. p. 202–11.

    Google Scholar 

  185. Belhassen B, Glick A, Viskin S. Efficacy of quinidine in high-risk patients with Brugada syndrome. Circulation. 2004;110:1731–7.

    PubMed  CrossRef  Google Scholar 

  186. Watanabe H, Chinushi M, Osaki A, Okamura K, Izumi D, Komura S, et al. Elimination of late potentials by quinidine in a patient with Brugada syndrome. J Electrocardiol. 2006;39:63–6.

    PubMed  CrossRef  Google Scholar 

  187. Fish JM, Antzelevitch C. Cellular and ionic basis for the sex-related difference in the manifestation of the Brugada syndrome and progressive conduction disease phenotypes. J Electrocardiol. 2003;36:173–9.

    PubMed  CrossRef  Google Scholar 

  188. Aiba T, Shimizu W, Hidaka I, Uemura K, Noda T, Zheng C, et al. Cellular basis for trigger and maintenance of ventricular fibrillation in the Brugada syndrome model: high-resolution optical mapping study. J Am Coll Cardiol. 2006;47:2074–85.

    PubMed  CAS  CrossRef  Google Scholar 

  189. Shimizu W, Yan GX, Antzelevitch C. The Brugada syndrome: clinical findings and cellular mechanism. In: Sekiguchi M, Fontaine G, editors. Arryth-mogenic Right Ventricular Cardiomyopathy: ARVC and Related Disorders. Springer-Verlag, Tokyo, Japan: Springer; 2009.

    Google Scholar 

  190. Aiba T, Hidaka I, Shimizu W, Uemura K, Inagaki M, Sugimachi M, et al. Steep repolarization gradient is required for development of phase 2 reentry and subsequent ventricular tachyarrhythmias in a model of the Brugada syndrome: high-resolution optical mapping study. Circulation. 2004;110:III–318 (Abstract).

    Google Scholar 

  191. Morita H, Zipes DP, Fukushima-Kusano K, Nagase S, Nakamura K, Morita ST, et al. Repolarization heterogeneity in the right ventricular outflow tract: correlation with ventricular arrhythmias in Brugada patients and in an in vitro canine Brugada model. Heart Rhythm. 2008;5:725–33.

    PubMed  CrossRef  Google Scholar 

  192. Morita H, Zipes DP, Morita ST, Wu J. Genotype-phenotype correlation in tissue models of Brugada syndrome simulating patients with sodium and calcium channelopathies. Heart Rhythm. 2010;7:820–7.

    PubMed  CrossRef  Google Scholar 

  193. Di Diego JM, Antzelevitch C. Cellular basis for ST-segment changes observed during ischemia. J Electrocardiol. 2003;36(Suppl):1–5.

    PubMed  CrossRef  Google Scholar 

  194. Di Diego JM, Fish JM, Antzelevitch C. Brugada syndrome and ischemia-induced ST-segment elevation. Similarities and differences. J Electrocardiol. 2005;38:14–7.

    PubMed  CrossRef  Google Scholar 

  195. Childers R. R wave amplitude in ischemia, injury, and infarction. J Electrocardiol. 1996;29:171–8.

    PubMed  CrossRef  Google Scholar 

  196. Cordeiro JM, Mazza M, Goodrow R, Ulahannan N, Antzelevitch C, Di Diego JM. Functionally distinct sodium channels in ventricular epicardial and endocardial cells contribute to a greater sensitivity of the epicardium to electrical depression. Am J Physiol Heart Circ Physiol. 2008;295:H154–62.

    PubMed  CAS  CrossRef  Google Scholar 

  197. Kandori A, Shimizu W, Yokokawa M, Noda T, Kamakura S, Miyatake K, et al. Identifying patterns of spatial current dispersion that characterise and separate the Brugada syndrome and complete right-bundle branch block. Med Biol Eng Comput. 2004;42:236–44.

    PubMed  CAS  CrossRef  Google Scholar 

  198. Hoogendijk MG, Potse M, Linnenbank AC, Verkerk AO, Den Ruijter HM, van Amersfoorth SC, et al. Mechanism of right precordial ST-segment elevation in structural heart disease: Excitation failure by current-to-load mismatch. Heart Rhythm. 2010;7:238–48.

    PubMed  CrossRef  Google Scholar 

  199. Marquez MF, Bisteni A, Medrano G, De Micheli A, Guevara M, Iturralde P, et al. Dynamic electrocardiographic changes after aborted sudden death in a patient with Brugada syndrome and rate-dependent right bundle branch block. J Electrocardiol. 2005;38:256–9.

    PubMed  CrossRef  Google Scholar 

  200. Litovsky SH, Antzelevitch C. Differences in the electrophysiological response of canine ventricular subendocardium and subepicardium to acetylcholine and isoproterenol. A direct effect of acetylcholine in ventricular myocardium. Circ Res. 1990;67:615–27.

    PubMed  CAS  CrossRef  Google Scholar 

  201. Tsuchiya T, Ashikaga K, Honda T, Arita M. Prevention of ventricular fibrillation by cilostazol, an oral phosphodiesterase inhibitor, in a patient with Brugada syndrome. J Cardiovasc Electrophysiol. 2002;13:698–701.

    PubMed  CrossRef  Google Scholar 

  202. Lukas A, Antzelevitch C. Differences in the electrophysiological response of canine ventricular epicardium and endocardium to ischemia: role of the transient outward current. Circulation. 1993;88:2903–15.

    PubMed  CAS  CrossRef  Google Scholar 

  203. Nishizaki M, Fujii H, Sakurada H, Kimura A, Hiraoka M. Spontaneous T wave alternans in a patient with Brugada syndrome-responses to intravenous administration of class I antiarrhythmic drug, glucose tolerance test, and atrial pacing. J Cardiovasc Electrophysiol. 2005;16:217–20.

    PubMed  CrossRef  Google Scholar 

  204. Tada H, Nogami A, Shimizu W, Naito S, Nakatsugawa M, Oshima S, et al. ST segment and T wave alternans in a patient with Brugada syndrome. Pacing Clin Electrophysiol. 2000;23:413–5.

    PubMed  CAS  CrossRef  Google Scholar 

  205. Chinushi M, Washizuka T, Okumura H, Aizawa Y. Intravenous administration of class I antiarrhythmic drugs induced T wave alternans in a patient with Brugada syndrome. J Cardiovasc Electrophysiol. 2001;12:493–5.

    PubMed  CAS  CrossRef  Google Scholar 

  206. Chinushi Y, Chinushi M, Toida T, Aizawa Y. Class I antiarrhythmic drug and coronary vasospasm-induced T wave alternans and ventricular ­tachyarrhythmia in a patient with Brugada syndrome and vasospastic angina. J Cardiovasc Electrophysiol. 2002;13:191–4.

    PubMed  CrossRef  Google Scholar 

  207. Takagi M, Doi A, Takeuchi K, Yoshikawa J. Pilsicanide-induced marked T wave alternans and ventricular fibrillation in a patient with Brugada syndrome. J Cardiovasc Electrophysiol. 2002;13:837.

    PubMed  CrossRef  Google Scholar 

  208. Ohkubo K, Watanabe I, Okumura Y, Yamada T, Masaki R, Kofune T, et al. Intravenous administration of class I antiarrhythmic drug induced T wave alternans in an asymptomatic Brugada syndrome patient. Pacing Clin Electrophysiol. 2003;26:1900–3.

    PubMed  CrossRef  Google Scholar 

  209. Morita H, Nagase S, Kusano K, Ohe T. Spontaneous T wave alternans and premature ventricular contractions during febrile illness in a patient with Brugada syndrome. J Cardiovasc Electrophysiol. 2002;13:816–8.

    PubMed  CrossRef  Google Scholar 

  210. Fish JM, Antzelevitch C. Cellular mechanism and arrhythmogenic potential of T-wave alternans in the Brugada syndrome. J Cardiovasc Electrophysiol. 2008;19:301–8.

    PubMed  CrossRef  Google Scholar 

  211. Morita H, Zipes DP, Lopshire J, Morita ST, Wu J. T wave alternans in an in vitro canine tissue model of Brugada syndrome. Am J Physiol Heart Circ Physiol. 2006;291:H421–8.

    PubMed  CAS  CrossRef  Google Scholar 

  212. Morita H, Zipes DP, Wu J. Brugada syndrome: insights of ST elevation, arrhythmogenicity, and risk stratification from experimental observations. Heart Rhythm. 2009;6:S34–43.

    PubMed  CrossRef  Google Scholar 

  213. Tada T, Kusano KF, Nagase S, Banba K, Miura D, Nishii N, et al. Clinical significance of macroscopic T-wave alternans after sodium channel blocker administration in patients with Brugada syndrome. J Cardiovasc Electrophysiol. 2008;19:56–61.

    PubMed  CrossRef  Google Scholar 

  214. Babaliaros VC, Hurst JW. Tricyclic antidepressants and the Brugada syndrome: an example of Brugada waves appearing after the administration of desipramine. Clin Cardiol. 2002;25:395–8.

    PubMed  CrossRef  Google Scholar 

  215. Goldgran-Toledano D, Sideris G, Kevorkian JP. Overdose of cyclic antidepressants and the Brugada syndrome. N Engl J Med. 2002;346:1591–2.

    PubMed  CrossRef  Google Scholar 

  216. Tada H, Sticherling C, Oral H, Morady F. Brugada syndrome mimicked by tricyclic antidepressant overdose. J Cardiovasc Electrophysiol. 2001;12:275.

    PubMed  CAS  CrossRef  Google Scholar 

  217. Pastor A, Nunez A, Cantale C, Cosio FG. Asymptomatic Brugada syndrome case unmasked during dimenhydrinate infusion. J Cardiovasc Electrophysiol. 2001;12:1192–4.

    PubMed  CAS  CrossRef  Google Scholar 

  218. Ortega-Carnicer J, Bertos-Polo J, Gutierrez-Tirado C. Aborted sudden death, transient Brugada pattern, and wide QRS dysrhythmias after massive cocaine ingestion. J Electrocardiol. 2001;34:345–9.

    PubMed  CAS  CrossRef  Google Scholar 

  219. Nogami A, Nakao M, Kubota S, Sugiyasu A, Doi H, Yokoyama K, et al. Enhancement of J-ST-segment elevation by the glucose and insulin test in Brugada syndrome. Pacing Clin Electrophysiol. 2003;26:332–7.

    PubMed  CrossRef  Google Scholar 

  220. Araki T, Konno T, Itoh H, Ino H, Shimizu M. Brugada syndrome with ventricular tachycardia and fibrillation related to hypokalemia. Circ J. 2003;67:93–5.

    PubMed  CrossRef  Google Scholar 

  221. Akhtar M, Goldschlager NF. Brugada electrocardiographic pattern due to tricyclic antidepressant overdose. J Electrocardiol. 2006;39:336–9.

    PubMed  CrossRef  Google Scholar 

  222. Krishnan SC, Josephson ME. ST segment elevation induced by class IC antiarrhythmic agents: underlying electrophysiologic mechanisms and insights into drug-induced proarrhythmia. J Cardiovasc Electrophysiol. 1998;9:1167–72.

    PubMed  CAS  CrossRef  Google Scholar 

  223. Gasparini M, Priori SG, Mantica M, Napolitano C, Galimberti P, Ceriotti C, et al. Flecainide test in Brugada syndrome: a reproducible but risky tool. Pacing Clin Electrophysiol. 2003;26:338–41.

    PubMed  CrossRef  Google Scholar 

  224. Takenaka S, Emori T, Koyama S, Morita H, Fukushima K, Ohe T. Asymptomatic form of Brugada syndrome. Pacing Clin Electrophysiol. 1999;22:1261–3.

    PubMed  CAS  CrossRef  Google Scholar 

  225. Shimizu W, Aiba T, Kurita T, Kamakura S. Paradoxic abbreviation of repolarization in epicardium of the right ventricular outflow tract during augmentation of Brugada-type ST segment elevation. J Cardiovasc Electrophysiol. 2001;12:1418–21.

    PubMed  CAS  CrossRef  Google Scholar 

  226. Matana A, Goldner V, Stanic K, Mavric Z, Zaputovic L, Matana Z. Unmasking effect of propafenone on the concealed form of the Brugada phenomenon. Pacing Clin Electrophysiol. 2000;23:416–8.

    PubMed  CAS  CrossRef  Google Scholar 

  227. Fragakis N, Iliadis I, Papanastasiou S, Lambrou A, Katsaris G. Brugada type electrocardiographic changes induced by concomitant use of lithium and propafenone in patient with Wolff-Parkinson-White syndrome. Pacing Clin Electrophysiol. 2007;30:823–5.

    PubMed  CrossRef  Google Scholar 

  228. Chutani S, Imran N, Grubb B, Kanjwal Y. Propafenone-induced Brugada-like ECG changes mistaken as acute myocardial infarction. Emerg Med J. 2008;25:117–8.

    PubMed  CAS  CrossRef  Google Scholar 

  229. Rolf S, Bruns HJ, Wichter T, Kirchhof P, Ribbing M, Wasmer K, et al. The ajmaline challenge in Brugada syndrome: diagnostic impact, safety, and recommended protocol. Eur Heart J. 2003;24:1104–12.

    PubMed  CAS  CrossRef  Google Scholar 

  230. Sarkozy A, Caenepeel A, Geelen P, Peytchev P, de Zutter M, Brugada P. Cibenzoline induced Brugada ECG pattern. Europace. 2005;7:537–9.

    PubMed  CrossRef  Google Scholar 

  231. Chinushi M, Tagawa M, Nakamura Y, Aizawa Y. Shortening of the ventricular fibrillatory intervals after administration of verapamil in a patient with Brugada syndrome and vasospastic angina. J Electrocardiol. 2006;39:331–5.

    PubMed  CrossRef  Google Scholar 

  232. Aouate P, Clerc J, Viard P, Seoud J. Propranolol intoxication revealing a Brugada syndrome. J Cardiovasc Electrophysiol. 2005;16:348–51.

    PubMed  CrossRef  Google Scholar 

  233. Matsuo K, Shimizu W, Kurita T, Inagaki M, Aihara N, Kamakura S. Dynamic changes of 12-lead electrocardiograms in a patient with Brugada syndrome. J Cardiovasc Electrophysiol. 1998;9:508–12.

    PubMed  CAS  CrossRef  Google Scholar 

  234. Sicouri S, Antzelevitch C. Sudden cardiac death secondary to antidepressant and antipsychotic drugs. Expert Opin Drug Saf. 2008;7:181–94.

    PubMed  CAS  CrossRef  Google Scholar 

  235. Bigwood B, Galler D, Amir N, Smith W. Brugada syndrome following tricyclic antidepressant overdose. Anaesth Intensive Care. 2005;33:266–70.

    PubMed  CAS  Google Scholar 

  236. Monteban-Kooistra WE, van Den Berg MP, Tulleken JE, Ligtenberg JJ, Meertens JH, Zijlstra JG. Brugada electrocardiographic pattern elicited by cyclic antidepressants overdose. Intensive Care Med. 2006;32:281–5.

    PubMed  CAS  CrossRef  Google Scholar 

  237. Meert A, Vermeersch N, Beckers R, Hoste W, Brugada P, Hubloue I. Brugada-like ECG pattern induced by tricyclic antidepressants. Eur J Emerg Med. 2010;17:325–7.

    PubMed  CrossRef  Google Scholar 

  238. Bolognesi R, Tsialtas D, Vasini P, Conti M, Manca C. Abnormal ventricular repolarization mimicking myocardial infarction after heterocyclic antidepressant overdose. Am J Cardiol. 1997;79:242–5.

    PubMed  CAS  CrossRef  Google Scholar 

  239. Rouleau F, Asfar P, Boulet S, Dube L, Dupuis JM, Alquier P, et al. Transient ST segment elevation in right precordial leads induced by psychotropic drugs: relationship to the Brugada syndrome. J Cardiovasc Electrophysiol. 2001;12:61–5.

    PubMed  CAS  CrossRef  Google Scholar 

  240. Yap YG, Behr ER, Camm AJ. Drug-induced Brugada syndrome. Europace. 2009;11:989–94.

    PubMed  CrossRef  Google Scholar 

  241. Darbar D, Yang T, Churchwell K, Wilde AA, Roden DM. Unmasking of Brugada syndrome by lithium. Circulation. 2005;112:1527–31.

    PubMed  CrossRef  Google Scholar 

  242. Chandra PA, Chandra AB. Brugada syndrome unmasked by lithium. South Med J. 2009;102:1263–5.

    PubMed  CrossRef  Google Scholar 

  243. Pirotte MJ, Mueller JG, Poprawski T. A case report of Brugada-type electrocardiographic changes in a patient taking lithium. Am J Emerg Med. 2008;26:113.

    PubMed  CrossRef  Google Scholar 

  244. Strohmer B, Schernthaner C. Brugada syndrome unmasked by lithium therapy. Wien Klin Wochenschr. 2007;119:282.

    PubMed  CrossRef  Google Scholar 

  245. Laske C, Soekadar SR, Laszlo R, Plewnia C. Brugada syndrome in a patient treated with lithium. Am J Psychiatry. 2007;164:1440–1.

    PubMed  CrossRef  Google Scholar 

  246. Josephson IR, Lederer WJ, Hartmann HA. Letter regarding article by Darbar et al, “unmasking of Brugada syndrome by lithium”. Circulation. 2006;113:e408.

    PubMed  CrossRef  Google Scholar 

  247. Lopez-Barbeito B, Lluis M, Delgado V, Jimenez S, Diaz-Infante E, Nogue-Xarau S, et al. Diphenhydramine overdose and Brugada sign. Pacing Clin Electrophysiol. 2005;28:730–2.

    PubMed  CrossRef  Google Scholar 

  248. Littmann L, Monroe MH, Svenson RH. Brugada-type electrocardiographic pattern induced by cocaine. Mayo Clin Proc. 2000;75:845–9.

    PubMed  CAS  CrossRef  Google Scholar 

  249. Vernooy K, Delhaas T, Cremer OL, Di Diego JM, Oliva A, Timmermans C, et al. Electrocardiographic changes predicting sudden death in propofol-related infusion syndrome. Heart Rhythm. 2006;3:131–7.

    PubMed  CrossRef  Google Scholar 

  250. Vaccarella A, Vitale P, Presti CA. General anaesthesia in a patient affected by Brugada syndrome. Minerva Anestesiol. 2008;74:149–52.

    PubMed  CAS  Google Scholar 

  251. Phillips N, Priestley M, Denniss AR, Uther JB. Brugada-type electrocardiographic pattern induced by epidural bupivacaine. Anesth Analg. 2003;97:264–7.

    PubMed  CrossRef  Google Scholar 

  252. Vernooy K, Sicouri S, Dumaine R, Hong K, Oliva A, Burashnikov E, et al. Genetic and biophysical basis for bupivacaine-induced ST segment elevation and VT/VF. Anesthesia unmasked Brugada syndrome. Heart Rhythm. 2006;3:1074–8.

    PubMed  CrossRef  Google Scholar 

  253. Noda T, Shimizu W, Taguchi A, Satomi K, Suyama K, Kurita T, et al. ST-segment elevation and ventricular fibrillation without coronary spasm by intracoronary injection of acetylcholine and/or ergonovine maleate in patients with Brugada syndrome. J Am Coll Cardiol. 2002;40:1841–7.

    PubMed  CrossRef  Google Scholar 

  254. Nishizaki M, Fujii H, Ashikaga T, Yamawake N, Sakurada H, Hiraoka M. ST-T wave changes in a patient complicated with vasospastic angina and Brugada syndrome: differential responses to acetylcholine in right and left coronary artery. Heart Vessels. 2008;23:201–5.

    PubMed  CrossRef  Google Scholar 

  255. Oliva A, Hu D, Viskin S, Carrier T, Cordeiro JM, Barajas-Martinez H, et al. SCN5A mutation associated with acute myocardial infarction. Leg Med (Tokyo). 2009;11 Suppl 1:S206–9.

    CrossRef  Google Scholar 

  256. Chinushi M, Furushima H, Tanabe Y, Washizuka T, Aizawaz Y. Similarities between Brugada syndrome and ischemia-induced ST-segment elevation. Clinical correlation and synergy. J Electrocardiol. 2005;38(Suppl):18–21.

    PubMed  CrossRef  Google Scholar 

  257. Nimmannit S, Malasit P, Chaovakul V, Susaengrat W, Vasuvattakul S, Nilwarangkur S. Pathogenesis of sudden unexplained nocturnal death (lai tai) and endemic distal renal tubular acidosis. Lancet. 1991;338:930–2.

    PubMed  CAS  CrossRef  Google Scholar 

  258. Wichter T, Matheja P, Eckardt L, Kies P, Schafers K, Schulze-Bahr E, et al. Cardiac autonomic dysfunction in Brugada syndrome. Circulation. 2002;105:702–6.

    PubMed  CrossRef  Google Scholar 

  259. Gonzalez Rebollo G, Madrid H, Carcia A, Garcia de Casto A, Moro AM. Reccurrent ventricular fibrillation during a febrile illness in a patient with the Brugada Syndrome. Rev Esp Cardiol. 2000;53:755–7.

    PubMed  CAS  CrossRef  Google Scholar 

  260. Madle A, Kratochvil Z, Polivkova A. The Brugada syndrome. Vnitr Lek. 2002;48:255–8.

    PubMed  CAS  Google Scholar 

  261. Kum L, Fung JWH, Chan WWL, Chan GK, Chan YS, Sanderson JE. Brugada syndrome unmasked by febrile illness. Pacing Clin Electrophysiol. 2002;25:1660–1.

    PubMed  CrossRef  Google Scholar 

  262. Keller DI, Huang H, Zhao J, Frank R, Suarez V, Delacretaz E, et al. A novel SCN5A mutation, F1344S, identified in a patient with Brugada syndrome and fever-induced ventricular fibrillation. Cardiovasc Res. 2006;70:521–9.

    PubMed  CAS  CrossRef  Google Scholar 

  263. Di Diego JM, Cordeiro JM, Goodrow RJ, Fish JM, Zygmunt AC, Peréz GJ, et al. Ionic and cellular basis for the predominance of the Brugada syndrome phenotype in males. Circulation. 2002;106:2004–11.

    PubMed  CrossRef  Google Scholar 

  264. Ezaki K, Nakagawa M, Taniguchi Y, Nagano Y, Teshima Y, Yufu K, et al. Gender differences in the ST segment: effect of androgen-deprivation therapy and possible role of testosterone. Circ J. 2010;74:2448–54.

    PubMed  CrossRef  Google Scholar 

  265. Antzelevitch C. The Brugada syndrome: diagnostic criteria and cellular mechanisms. Eur Heart J. 2001;22:356–63.

    PubMed  CAS  CrossRef  Google Scholar 

  266. Brugada J, Brugada R, Brugada P. Pharmacological and device approach to therapy of inherited ­cardiac diseases associated with cardiac arrhythmias and sudden death. J Electrocardiol. 2000;33(Suppl):41–7.

    PubMed  CrossRef  Google Scholar 

  267. Haissaguerre M, Extramiana F, Hocini M, Cauchemez B, Jais P, Cabrera JA, et al. Mapping and ablation of ventricular fibrillation associated with long-QT and Brugada syndromes. Circulation. 2003;108:925–8.

    PubMed  CrossRef  Google Scholar 

  268. van Den Berg MP, Wilde AA, Viersma TJW, Brouwer J, Haaksma J, van der Hout AH, et al. Possible bradycardic mode of death and successful pacemaker treatment in a large family with features of long QT syndrome type 3 and Brugada syndrome. J Cardiovasc Electrophysiol. 2001;12:630–6.

    PubMed  CrossRef  Google Scholar 

  269. Chinushi M, Aizawa Y, Ogawa Y, Shiba M, Takahashi K. Discrepant drug action of disopyramide on ECG abnormalities and induction of ventricular arrhythmias in a patient with Brugada syndrome. J Electrocardiol. 1997;30:133–6.

    PubMed  CAS  CrossRef  Google Scholar 

  270. Sharif-Kazemi MB, Emkanjoo Z, Tavoosi A, Kafi M, Kheirkhah J, Alizadeh A, Sadr-Ameli MA.Electrical storm in Brugada syndrome during pregnancy. Pacing Clin Electrophysiol. 2011; 34(2):e18–21.

    PubMed  CAS  CrossRef  Google Scholar 

  271. Kyriazis K, Bahlmann E, van der Schalk H, Kuck KH. Electrical storm in Brugada syndrome successfully treated with orciprenaline; effect of low-dose quinidine on the electrocardiogram. Europace. 2009;11:665–6.

    PubMed  CrossRef  Google Scholar 

  272. Haghjoo M, Arya A, Heidari A, Sadr-Ameli MA. Suppression of electrical storm by oral quinidine in a patient with Brugada syndrome. J Cardiovasc Electrophysiol. 2005;16:674.

    PubMed  CrossRef  Google Scholar 

  273. Alings M, Dekker L, Sadee A, Wilde A. Quinidine induced electrocardiographic normalization in two patients with Brugada syndrome. Pacing Clin Electrophysiol. 2001;24:1420–2.

    PubMed  CAS  CrossRef  Google Scholar 

  274. Belhassen B, Viskin S, Fish R, Glick A, Setbon I, Eldar M. Effects of electrophysiologic-guided therapy with class IA antiarrhythmic drugs on the long-term outcome of patients with idiopathic ventricular fibrillation with or without the Brugada syndrome. J Cardiovasc Electrophysiol. 1999;10:1301–12.

    PubMed  CAS  CrossRef  Google Scholar 

  275. Belhassen B, Viskin S, Antzelevitch C. The Brugada syndrome: is an implantable cardioverter defibrillator the only therapeutic option? Pacing Clin Electrophysiol. 2002;25:1634–40.

    PubMed  CrossRef  Google Scholar 

  276. Hermida JS, Denjoy I, Clerc J, Extramiana F, Jarry G, Milliez P, et al. Hydroquinidine therapy in Brugada syndrome. J Am Coll Cardiol. 2004;43:1853–60.

    PubMed  CAS  CrossRef  Google Scholar 

  277. Mok NS, Chan NY, Chi-Suen CA. Successful use of quinidine in treatment of electrical storm in Brugada syndrome. Pacing Clin Electrophysiol. 2004;27:821–3.

    PubMed  CrossRef  Google Scholar 

  278. Kanlop N, Chattipakorn S, Chattipakorn N. Effects of cilostazol in the heart. J Cardiovasc Med (Hagerstown). 2011;12:88–95.

    CrossRef  Google Scholar 

  279. Fish JM, Extramiana F, Antzelevitch C. Tedisamil abolishes the arrhythmogenic substrate responsible for VT/VF in an experimental model of the Brugada syndrome. Heart Rhythm. 2004;1(1S):S158 (Abstract).

    Google Scholar 

  280. Fish JM, Extramiana F, Antzelevitch C. AVE0118, an Ito and IKur blocker, suppresses VT/VF in an experimental model of the Brugada syndrome. Circulation. 2004;110(17):III-193 (Abstract).

    Google Scholar 

  281. de La Coussaye JE, Bassoul B, Brugada J, Albat B, Peray PA, Gagnol JP, et al. Reversal of electrophysiologic and hemodynamic effects induced by high dose of bupivacaine by the combination of clonidine and dobutamine in anesthetized dogs. Anesth Analg. 1992;74(5):703–11.

    PubMed  CAS  CrossRef  Google Scholar 

  282. Fish JM, Welchons DR, Kim YS, Lee SH, Ho WK, Antzelevitch C. Dimethyl lithospermate B, an extract of danshen, suppresses arrhythmogenesis associated with the Brugada syndrome. Circulation. 2006;113:1393–400.

    PubMed  CAS  CrossRef  Google Scholar 

  283. Brugada P, Brugada R, Brugada J, Geelen P. Use of the prophylactic implantable cardioverter defibrillator for patients with normal hearts. Am J Cardiol. 1999;83:98D–100.

    PubMed  CAS  CrossRef  Google Scholar 

  284. Kron J, Herre J, Renfroe EG, Rizo-Patron C, Raitt M, Halperin B, et al. Lead- and device-related complications in the antiarrhythmics versus implantable defibrillators trial. Am Heart J. 2001;141:92–8.

    PubMed  CAS  CrossRef  Google Scholar 

  285. AVID Investigators. A comparison of antiarrhythmic-drug therapy with implantable defibrillators in patients resuscitated from near-fatal ventricular arrhythmias. The antiarrhythmics versus implantable defibrillators (AVID) investigators. N Engl J Med 1997;337:1576–83.

    Google Scholar 

  286. Sacher F, Probst V, Iesaka Y, Jacon P, Laborderie J, Mizon-Gerard F, et al. Outcome after implantation of a cardioverter-defibrillator in patients with Brugada syndrome: a multicenter study. Circulation. 2006;114:2317–24.

    PubMed  CrossRef  Google Scholar 

  287. Antzelevitch C, Brugada P, Brugada J, Brugada R. The Brugada syndrome: from bench to bedside. Oxford: Blackwell Futura; 2005.

    CrossRef  Google Scholar 

  288. Antzelevitch C, Fish JM. Therapy for the Brugada syndrome. Handb Exp Pharmacol. 2006;171:305–30.

    PubMed  CAS  CrossRef  Google Scholar 

  289. Nakazato Y, Suzuki T, Yasuda M, Daida H. Manifestation of brugada syndrome after pacemaker implantation in a patient with sick sinus syndrome. J Cardiovasc Electrophysiol. 2004;15:1328–30.

    PubMed  CrossRef  Google Scholar 

  290. Shah AJ, Hocini M, Lamaison D, Sacher F, Derval N, Haissaguerre M. Regional substrate ablation abolishes Brugada syndrome. J Cardiovasc Electrophysiol. 2011;22:1290–1.

    PubMed  CrossRef  Google Scholar 

  291. Antzelevitch C, Brugada P, Brugada J, Brugada R, Nademanee K, Towbin JA. Clinical approaches to tachyarrhythmias. The Brugada syndrome. Armonk: Futura Publishing Company; 1999.

    Google Scholar 

  292. Grant AO. Electrophysiological basis and genetics of Brugada syndrome. J Cardiovasc Electrophysiol. 2005;16 Suppl 1:S3–7.

    PubMed  CrossRef  Google Scholar 

  293. Minoura Y, Di Diego JM, Barajas-Martinez H, Zygmunt AC, Hu D, Sicouri S, et al. Ionic and cellular mechanisms underlying the development of acquired Brugada syndrome in patients treated with antidepressants. J Cardiovasc Electrophysiol. 2012;23:423–32.

    PubMed  CrossRef  Google Scholar 

  294. Marquez MF, Rivera J, Hermosillo AG, Iturralde P, Colin L, Moragrega JL, et al. Arrhythmic storm responsive to quinidine in a patient with Brugada syndrome and vasovagal syncope. Pacing Clin Electrophysiol. 2005;28:870–3.

    PubMed  CrossRef  Google Scholar 

  295. Mizusawa Y, Sakurada H, Nishizaki M, Hiraoka M. Effects of low-dose quinidine on ventricular tachyarrhythmias in patients with Brugada syndrome: low-dose quinidine therapy as an adjunctive treatment. J Cardiovasc Pharmacol. 2006;47:359–64.

    PubMed  CAS  Google Scholar 

  296. Viskin S, Wilde AA, Tan HL, Antzelevitch C, Shimizu W, Belhassen B. Empiric quinidine therapy for asymptomatic Brugada syndrome: time for a prospective registry. Heart Rhythm. 2009;6:401–4.

    PubMed  CrossRef  Google Scholar 

  297. Wu L, Guo D, Li H, Hackett J, Yan GX, Jiao Z, et al. Role of late sodium current in modulating the proarrhythmic and antiarrhythmic effects of quinidine. Heart Rhythm. 2008;5:1726–34.

    PubMed  CrossRef  Google Scholar 

  298. Viskin S, Antzelevitch C, Marquez MF, Belhassen B. Quinidine: a valuable medication joins the list of ‘endangered species’. Europace. 2007;12:1105–6.

    CrossRef  Google Scholar 

  299. Zeltser D, Justo D, Halkin A, Prokhorov V, Heller K, Viskin S. Torsade de pointes due to noncardiac drugs: most patients have easily identifiable risk factors. Medicine (Baltimore). 2003;82:282–90.

    Google Scholar 

  300. Antzelevitch C, Shimizu W. Cellular mechanisms underlying the long QT syndrome. Curr Opin Cardiol. 2002;17:43–51.

    PubMed  CrossRef  Google Scholar 

  301. Belardinelli L, Antzelevitch C, Vos MA. Assessing predictors of drug-induced torsade de pointes. Trends Pharmacol Sci. 2003;24:619–25.

    PubMed  CAS  CrossRef  Google Scholar 

  302. Antzelevitch C. The Brugada syndrome: ionic basis and arrhythmia mechanisms. J Cardiovasc Electrophysiol. 2001;12:268–72.

    PubMed  CAS  CrossRef  Google Scholar 

  303. Suzuki H, Torigoe K, Numata O, Yazaki S. Infant case with a malignant form of Brugada syndrome. J Cardiovasc Electrophysiol. 2000;11:1277–80.

    PubMed  CAS  CrossRef  Google Scholar 

  304. Tanaka H, Kinoshita O, Uchikawa S, Kasai H, Nakamura M, Izawa A, et al. Successful prevention of recurrent ventricular fibrillation by intravenous isoproterenol in a patient with Brugada syndrome. Pacing Clin Electrophysiol. 2001;24:1293–4.

    PubMed  CAS  CrossRef  Google Scholar 

Download references

Acknowledgement.

Supported by grant HL47678 from NHLBI, grant C026424 from NYSTEM and NYS and Florida Grand Lodges F. & A. M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Antzelevitch PhD, FACC, FAHA, FHRS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Antzelevitch, C., Viskin, S. (2013). Brugada Syndrome: Cellular Mechanisms and Approaches to Therapy. In: Gussak, I., Antzelevitch, C. (eds) Electrical Diseases of the Heart. Springer, London. https://doi.org/10.1007/978-1-4471-4881-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4881-4_29

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4880-7

  • Online ISBN: 978-1-4471-4881-4

  • eBook Packages: MedicineMedicine (R0)