Skip to main content

Monoidal Categorifications of Cluster Algebras of Type A and D

  • Conference paper

Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS,volume 40)

Abstract

In this note, we introduce monoidal subcategories of the tensor category of finite-dimensional representations of a simply-laced quantum affine algebra, parametrized by arbitrary Dynkin quivers. For linearly oriented quivers of types A and D, we show that these categories provide monoidal categorifications of cluster algebras of the same type. The proof is purely representation-theoretical, in the spirit of Hernandez and Leclerc (Duke Math. J. 154, 265–341, 2010).

Keywords

  • Cluster Algebras
  • Monoidal Categorification
  • Dynkin Quiver
  • Tensor Category
  • Dominant Monomer

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4471-4863-0_8
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4471-4863-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.00
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

References

  1. Cerulli Irelli, G., Keller, B., Labardini-Fragoso, D., Plamondon, P.: Linear independence of cluster monomials for skew-symmetric cluster algebras. arXiv:1203.1307

  2. Chari, V., Hernandez, D.: Beyond Kirillov-Reshetikhin modules. In: Quantum Affine Algebras, Extended Affine Lie Algebras, and Their Applications. Contemp. Math., vol. 506, pp. 49–81 (2010)

    CrossRef  Google Scholar 

  3. Fomin, S., Zelevinsky, A.: Cluster algebras II: finite type classification. Invent. Math. 154, 63–121 (2003)

    CrossRef  MathSciNet  MATH  Google Scholar 

  4. Fomin, S., Zelevinsky, A.: Cluster algebras: notes for the CDM-03 conference. In: Current Developments in Mathematics, pp. 1–34. Int. Press, Somerville (2003)

    Google Scholar 

  5. Fomin, S., Zelevinsky, A.: Cluster algebras IV: coefficients. Compos. Math. 143, 112–164 (2007)

    CrossRef  MathSciNet  MATH  Google Scholar 

  6. Fomin, S., Shapito, M., Thurston, D.: Cluster algebras and triangulated surfaces. I. Cluster complexes. Acta Math. 201(1), 83–146 (2008)

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. Frenkel, E., Mukhin, E.: Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras. Commun. Math. Phys. 216, 23–57 (2001)

    CrossRef  MathSciNet  MATH  Google Scholar 

  8. Frenkel, E., Reshetikhin, N.: The q-characters of representations of quantum affine algebras. In: Recent Developments in Quantum Affine Algebras and Related Topics. Contemp. Math., vol. 248, pp. 163–205 (1999)

    CrossRef  Google Scholar 

  9. Geiss, C., Leclerc, B., Schröer, J.: Kac-Moody groups and cluster algebras. Adv. Math. 228, 329–433 (2011)

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. Geiss, C., Leclerc, B., Schröer, J.: Factorial cluster algebras. arXiv:1110.1199

  11. Hernandez, D.: Monomials of q and q,t-characters for non simply-laced quantum affinizations. Math. Z. 250, 443–473 (2005)

    CrossRef  MathSciNet  MATH  Google Scholar 

  12. Hernandez, D.: On minimal affinizations of representations of quantum groups. Commun. Math. Phys. 277(1), 221–259 (2007)

    CrossRef  Google Scholar 

  13. Hernandez, D.: Smallness problem for quantum affine algebras and quiver varieties. Ann. Sci. Éc. Norm. Super. 41(2), 271–306 (2008)

    MATH  Google Scholar 

  14. Hernandez, D.: Simple tensor products. Invent. Math. 181, 649–675 (2010)

    CrossRef  MathSciNet  MATH  Google Scholar 

  15. Hernandez, D., Leclerc, B.: Cluster algebras and quantum affine algebras. Duke Math. J. 154, 265–341 (2010)

    CrossRef  MathSciNet  MATH  Google Scholar 

  16. Hernandez, D., Leclerc, B.: Quantum Grothendieck rings and derived Hall algebras. arXiv:1109.0862

  17. Keller, B.: Algèbres amassées et applications (d’après Fomin-Zelevinsky, …). In: Séminaire Bourbaki. Vol. 2009/2010. Exposés 1012-1026. Astérisque, vol. 339, pp. 63–90 (2011). Exp. No. 1014, vii

    Google Scholar 

  18. Leclerc, B.: Quantum loop algebras, quiver varieties, and cluster algebras. In: Skowroński, A., Yamagata, K. (eds.) Representations of Algebras and Related Topics. EMS Series of Congress Reports, pp. 117–152 (2011)

    CrossRef  Google Scholar 

  19. Mukhin, E., Young, C.A.S.: Extended T-systems. Sel. Math. New Ser. 18, 591–631 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Nakajima, H.: Quiver varieties and cluster algebras. Kyoto J. Math. 51, 71–126 (2011)

    CrossRef  MathSciNet  MATH  Google Scholar 

  21. Qin, F.: Algèbres amassées quantiques acycliques. PhD thesis, Université Paris 7, May (2012)

    Google Scholar 

  22. Yang, S.-W.: Combinatorial expressions for F-polynomials in classical types. J. Comb. Theory, Ser. A 119(3), 747–764 (2012)

    CrossRef  MATH  Google Scholar 

  23. Yang, S.-W., Zelevinsky, A.: Cluster algebras of finite type via Coxeter elements and principal minors. Transform. Groups 13(3–4), 855–895 (2008)

    CrossRef  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author would like to thank A. Zelevinsky for explaining the results in [22, 23]. The authors are grateful to the referee for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Hernandez .

Editor information

Editors and Affiliations

Additional information

To M. Jimbo on his 60th birthday.

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag London

About this paper

Cite this paper

Hernandez, D., Leclerc, B. (2013). Monoidal Categorifications of Cluster Algebras of Type A and D . In: Iohara, K., Morier-Genoud, S., Rémy, B. (eds) Symmetries, Integrable Systems and Representations. Springer Proceedings in Mathematics & Statistics, vol 40. Springer, London. https://doi.org/10.1007/978-1-4471-4863-0_8

Download citation