Abstract
In this note, we introduce monoidal subcategories of the tensor category of finite-dimensional representations of a simply-laced quantum affine algebra, parametrized by arbitrary Dynkin quivers. For linearly oriented quivers of types A and D, we show that these categories provide monoidal categorifications of cluster algebras of the same type. The proof is purely representation-theoretical, in the spirit of Hernandez and Leclerc (Duke Math. J. 154, 265–341, 2010).
Keywords
- Cluster Algebras
- Monoidal Categorification
- Dynkin Quiver
- Tensor Category
- Dominant Monomer
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
References
Cerulli Irelli, G., Keller, B., Labardini-Fragoso, D., Plamondon, P.: Linear independence of cluster monomials for skew-symmetric cluster algebras. arXiv:1203.1307
Chari, V., Hernandez, D.: Beyond Kirillov-Reshetikhin modules. In: Quantum Affine Algebras, Extended Affine Lie Algebras, and Their Applications. Contemp. Math., vol. 506, pp. 49–81 (2010)
Fomin, S., Zelevinsky, A.: Cluster algebras II: finite type classification. Invent. Math. 154, 63–121 (2003)
Fomin, S., Zelevinsky, A.: Cluster algebras: notes for the CDM-03 conference. In: Current Developments in Mathematics, pp. 1–34. Int. Press, Somerville (2003)
Fomin, S., Zelevinsky, A.: Cluster algebras IV: coefficients. Compos. Math. 143, 112–164 (2007)
Fomin, S., Shapito, M., Thurston, D.: Cluster algebras and triangulated surfaces. I. Cluster complexes. Acta Math. 201(1), 83–146 (2008)
Frenkel, E., Mukhin, E.: Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras. Commun. Math. Phys. 216, 23–57 (2001)
Frenkel, E., Reshetikhin, N.: The q-characters of representations of quantum affine algebras. In: Recent Developments in Quantum Affine Algebras and Related Topics. Contemp. Math., vol. 248, pp. 163–205 (1999)
Geiss, C., Leclerc, B., Schröer, J.: Kac-Moody groups and cluster algebras. Adv. Math. 228, 329–433 (2011)
Geiss, C., Leclerc, B., Schröer, J.: Factorial cluster algebras. arXiv:1110.1199
Hernandez, D.: Monomials of q and q,t-characters for non simply-laced quantum affinizations. Math. Z. 250, 443–473 (2005)
Hernandez, D.: On minimal affinizations of representations of quantum groups. Commun. Math. Phys. 277(1), 221–259 (2007)
Hernandez, D.: Smallness problem for quantum affine algebras and quiver varieties. Ann. Sci. Éc. Norm. Super. 41(2), 271–306 (2008)
Hernandez, D.: Simple tensor products. Invent. Math. 181, 649–675 (2010)
Hernandez, D., Leclerc, B.: Cluster algebras and quantum affine algebras. Duke Math. J. 154, 265–341 (2010)
Hernandez, D., Leclerc, B.: Quantum Grothendieck rings and derived Hall algebras. arXiv:1109.0862
Keller, B.: Algèbres amassées et applications (d’après Fomin-Zelevinsky, …). In: Séminaire Bourbaki. Vol. 2009/2010. Exposés 1012-1026. Astérisque, vol. 339, pp. 63–90 (2011). Exp. No. 1014, vii
Leclerc, B.: Quantum loop algebras, quiver varieties, and cluster algebras. In: Skowroński, A., Yamagata, K. (eds.) Representations of Algebras and Related Topics. EMS Series of Congress Reports, pp. 117–152 (2011)
Mukhin, E., Young, C.A.S.: Extended T-systems. Sel. Math. New Ser. 18, 591–631 (2012)
Nakajima, H.: Quiver varieties and cluster algebras. Kyoto J. Math. 51, 71–126 (2011)
Qin, F.: Algèbres amassées quantiques acycliques. PhD thesis, Université Paris 7, May (2012)
Yang, S.-W.: Combinatorial expressions for F-polynomials in classical types. J. Comb. Theory, Ser. A 119(3), 747–764 (2012)
Yang, S.-W., Zelevinsky, A.: Cluster algebras of finite type via Coxeter elements and principal minors. Transform. Groups 13(3–4), 855–895 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Additional information
To M. Jimbo on his 60th birthday.
Rights and permissions
Copyright information
© 2013 Springer-Verlag London
About this paper
Cite this paper
Hernandez, D., Leclerc, B. (2013). Monoidal Categorifications of Cluster Algebras of Type A and D . In: Iohara, K., Morier-Genoud, S., Rémy, B. (eds) Symmetries, Integrable Systems and Representations. Springer Proceedings in Mathematics & Statistics, vol 40. Springer, London. https://doi.org/10.1007/978-1-4471-4863-0_8
Download citation
DOI: https://doi.org/10.1007/978-1-4471-4863-0_8
Publisher Name: Springer, London
Print ISBN: 978-1-4471-4862-3
Online ISBN: 978-1-4471-4863-0
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)