Advertisement

Quantum Secure Direct Communication Protocol Based on Four-Qubit Cluster State

Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 219)

Abstract

In order to improve the reliability and security of quantum direct communication, this paper proposed a new quantum secure direct communication protocol based on the entanglement properties of cluster state and EPR entangled pairs. This protocol takes four-quit cluster state as the information carrier, using unitary transformation, through quantum information states to do the Bell-based measurements to interpret the secret messages. The cluster state is better than W state of entanglement properties, has a higher efficiency of the communication, and is more comfortable to use for information carrier.

Keywords

Quantum cryptography Cluster state Quantum secure direct communication protocol Bell basis measurement 

References

  1. 1.
    Bennett CH, Brassard G (1984) In: Proceedings of IEEE international conference on computers, systems and signal processing vol 16/4. Bangalore, pp 175–179Google Scholar
  2. 2.
    Bennett CH, Brassard G, Mermin ND (1992) Quantum cryptography without bell's theorem. Phys Rev Lett 68(11):557–559Google Scholar
  3. 3.
    Bennett CH (1992) . Quantum cryptography Using any two nonorthogonal states[J]. Phys Rev Lett 68(9):3121–3126CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Bennett CH, Wiesner SJ (1992) Communication via one and two-particle operators on Einstein-Podolsky-Rosen states. Phys Rev Lett 68(8):3111–3116MathSciNetGoogle Scholar
  5. 5.
    Gisin N, Ribordy G, Tittel W, Zbinden H (2002) Quantum cryptography. Rev Mod Phys 74 145, and the references therein 13(5):831–837Google Scholar
  6. 6.
    Deng FG, Long GL, Liu XS (2003) Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A68, 042317 14(9):123–138Google Scholar
  7. 7.
    Deng FG, Long GL (2004) Secure direct communication with a quantm one-time-pad. Phys Rev A69 052319 7(5):342–348Google Scholar
  8. 8.
    Cao WF, Yang YG, Wen QY (2010) Quantum secure direct communication with cluster states. Sci China Phys Mech Astron 53:1271–1275CrossRefGoogle Scholar
  9. 9.
    Zhang XL, Zhang YX, Wei H (2009) Quantum secure direct communication with Greenberger-Horne-Zeilinger- type state (GHZ state) over noisy channels. Chin Phys B18:435–439Google Scholar
  10. 10.
    Lee HJ, Ahn D, Hwang SW (2004) Quantum ditect communication with authentication. Phys Rev 66(15):24–34Google Scholar
  11. 11.
    Li XH, Li CY, Deng FG, Zhou P, Liang YJ, Zhou HY (2007) Quantum secure direct communication with quantum encryption b ased on pure entangled states. Chin Phys 16:2149–2153Google Scholar
  12. 12.
    Cirac JI, Gisin N (1997) Coherent eavesdropping strategies for the four state quantum cryptography protocol. Physics Letters A 229(1):1–7Google Scholar
  13. 13.
    Nielsen MA, Chuang IL (2000) Quantum computation and quantum information, vol 62/5. Press of the University of Cambridge, Cambridge, pp 28–31Google Scholar
  14. 14.
    Gao T, Yan FL, Wang ZX (2005) Deterministic secure direct communication using GHZ states and swapping quantum entanglement. J Phys A Math Gen 22(10):2473−2476Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Xianzhong Li
    • 1
  • Guotian He
    • 1
  • Mingxin Gu
    • 1
  • Pengfei Dai
    • 1
  1. 1.Chongqing Institute of Green and Intelligent TechnologyChinese Academy of Sciences College of Computer and Information Science, Chongqing Normal UniversityChongqingChina

Personalised recommendations