Solutions for Discrete Toda Equation with Homotopy Analysis Method

  • Xiu Rong Chen
  • Jia Shang Yu
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 217)


In this letter, we apply the homotopy analysis method (HAM) to solving the differential-difference equations, and the approximate solution for the model was obtained. HAM contains the auxiliary parameter h, which provides us with a convenient way to adjust and control convergence region and rate of solution series. The results show that the method is feasible for the discrete Toda equation studies


Differential-difference equations Homotopy analysis method Discrete Toda equation 


  1. 1.
    Maric DM, Meier PF, Estreicher SK (1992) Mater Sci Forum 12(4):83–87Google Scholar
  2. 2.
    Malfliet W (2004) J Comp Appl Math 164(16):529–541Google Scholar
  3. 3.
    Li S, Chen X (2009) Yin Shan Acad J 23(14):5–7Google Scholar
  4. 4.
    Sun MN, Deng SF, Chen DY (2005) Chaos, solitons and fractals 23(21):1169–1174Google Scholar
  5. 5.
    Nimmo JJC (2000) Chaos, solitons and fractals 11(5):115–118Google Scholar
  6. 6.
    Liao SJ (1992) PhD dissertation, Shanghai Jiao Tong University 43(24):643–649Google Scholar
  7. 7.
    Liao SJ (2003) Chapman and Hall/CRC Press, Boca Raton 23(3):93–97Google Scholar
  8. 8.
    Hayat T, Sajid M (2007) Phys Lett A 361(37):316–322Google Scholar
  9. 9.
    Abbasbandy S (2006) Phys Lett A 360(32):109–113Google Scholar
  10. 10.
    Liao SJ (2005) Appl Math Comput 16(9):1186–1194Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of Science and InformationQingdao Agricultural UniversityQingdaoChina
  2. 2.Dean’s OfficeHeze CollegeHezeChina

Personalised recommendations