Use of Carbon Nanotubes in Photoactuating Composites

  • William B. Euler


The use of carbon nanotubes in systems that cause a direct conversion of light to mechanical motion is reviewed. Both single walled and multiwalled carbon nanotubes have been utilized in structures that induce macroscopic actuation responses. Various modalities include bundles of carbon nanotubes, free-standing films, carbon nanotubes dispersed into a host matrix, and carbon nanotubes as part of layered structures. In all cases the carbon nanotubes are responsible for the absorption of the light and also for the optomechanical actuation. Simple thermal effects are not the primary contributor to the photoactuation. However, the surrounding environment also influences the observed strain or stress measurements, often leading to an amplification of the intrinsic effect initiated by the carbon nanotubes.


Mechanical Motion Simple Exponential Function Mixed Cellulose Ester Hydrophobic State Rubbery Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baughman, R.H., Cui, C., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., DeRossi, D., Rinzler, A.G., Jaschinski, O., Roth, S., Kertesz, M.: Carbon nanotube actuators. Science 284, 1340–1344 (1999)CrossRefGoogle Scholar
  2. 2.
    Minett, A., Fràyasse, J., Gang, G., Kim, G.-T., Roth, S.: Nanotube actuators for nanomechanics. Curr. Appl. Phys. 2, 61–64 (2002)CrossRefGoogle Scholar
  3. 3.
    Gartstein, Yu.N, Zakhidov, A.A., Baughman, R.H.: Charge-induced anisotropic distortions of semiconducting and metallic carbon nanotubes. Phys. Rev. Lett. 89, 045503/1–045503/4 (2002)CrossRefGoogle Scholar
  4. 4.
    Sun, G., Kürti, J., Kertesz, M., Baughman, R.H.: Dimensional changes as a function of charge injection in single-walled carbon nanotubes. J. Am. Chem. Soc. 124, 15076–15080 (2002)CrossRefGoogle Scholar
  5. 5.
    Landi, B.J., Raffaelle, R.P., Heben, M.J., Alleman, J.L., VanDerveer, W., Gennett, T.: Single wall carbon nanotube–nafion composite actuators. Nano Lett. 2, 1329–1332 (2002)CrossRefGoogle Scholar
  6. 6.
    Tahhan, M., Truong, V.-T., Spinks, G.M., Wallace, G.G.: Carbon nanotube and polyaniline composite actuators. Smart Mater. Struct. 12, 626–632 (2003)CrossRefGoogle Scholar
  7. 7.
    Levitsky, I.A., Kanelos, P.T., Euler, W.B.: Novel actuating system based on a composite of single-walled carbon nanotubes and an ionomeric polymer. Mater. Res. Soc. Symp. Proc. 785, D9.1.1–D9.1.6 (2004)Google Scholar
  8. 8.
    Levitsky, I.A., Kanelos, P., Euler, W.B.: Electromechanical actuation of composite material from carbon nanotubes and ionomeric polymer. J. Chem. Phys. 121, 1058–1065 (2004)CrossRefGoogle Scholar
  9. 9.
    Minett, A., Fràysse, J., Gang, G., Kim, G.-T., Roth, S.: Nanotube actuators for nanomechanics. Curr. Appl. Phys. 2, 61–64 (2002)CrossRefGoogle Scholar
  10. 10.
    Gartstein, Yu.N, Zakhidov, A.A., Baughman, R.H.: Charge-induced anisotropic distortions of semiconducting and metallic carbon nanotubes. Phys. Rev. Lett. 89, 045503/1–045503/4 (2002)CrossRefGoogle Scholar
  11. 11.
    Liu, J.Z., Zheng, Q., Jiang, Q.: Effect of bending instabilities on the measurements of mechanical properties of multiwalled carbon nanotubes. Phys. Rev. B. 67, 075414/1–075414/8 (2003)Google Scholar
  12. 12.
    Li, C., Chou, T.-W.: Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators. Phys. Rev. B 68, 073405/1–073405/3 (2003)Google Scholar
  13. 13.
    Bozovic, D., Bockrath, M., Hafner, J.H., Lieber, C.M., Park, H., Tinkham, M.: Plastic deformations in mechanically strained single-walled carbon nanotubes. Phys. Rev. B 67, 033407/1–033407/4 (2003)CrossRefGoogle Scholar
  14. 14.
    Verissimo-Alves, M., Koiller, B., Chacham, H., Capaz, R.B.: Electromechanical effects in carbon nanotubes: ab initio and analytical tight-binding calculations. Phys. Rev. B 67, 161401/1–161401/4 (2003)CrossRefGoogle Scholar
  15. 15.
    Cao, J., Wang, Q., Dai, H.: Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. Phys. Rev. Lett. 90, 157601/1–157601/4 (2003)CrossRefGoogle Scholar
  16. 16.
    Farajian, A.A., Yakobson, B.I., Mizuseki, H., Kawazoe, Y.: Electronic transport through bent carbon nanotubes: nanoelectromechanical sensors and switches. Phys. Rev. B 67, 205423/1–205423/6 (2003)CrossRefGoogle Scholar
  17. 17.
    Sapmaz, S., Blanter, Ya.M., Gurevich, L., van der Zant, H.S.J.: Carbon nanotubes as nanoelectromechanical systems. Phys. Rev. B. 67, 235414/1–235414/7 (2003)Google Scholar
  18. 18.
    Minot, E.D., Yaish, Y., Sazonova, V., Park, J.-Y., Brink, M., McEuen, P.L.: Tuning carbon nanotube band gaps with strain. Phys. Rev. Lett. 90, 156401/1–156401/4 (2003)CrossRefGoogle Scholar
  19. 19.
    Pastewka, L., Kosinen, P., Elsasser, C., Moseler, M.: Understanding the microscopic processes that govern the charge-induced deformation of carbone nanotubes. Phys. Rev. B Cond. Matt. Phys. 180, 155428/1–155428/16 (2009)Google Scholar
  20. 20.
    Zhang, Y., Iijima, S.: Elastic response of carbon nanotube bundles to visible light. Phys. Rev. Lett. 82, 3472–3475 (1999)CrossRefGoogle Scholar
  21. 21.
    Cronin, S.B., Yin, Y., Walsh, A., Capaz, R.B., Stolyrov, A., Tangney, P., Cohern, M.L., Louie, S.G., Swan, A.K., Ünlü, M.S., Goldberg, B.B., Tinkham, M.: Temperature dependence of the optical transition energies of carbon nanotubes: the role of electron-phonon coupling and thermal expansion. Phys. Rev. Lett. 96, 127403/1–127402/4 (2006)CrossRefGoogle Scholar
  22. 22.
    Ahir, S.V., Terentjev, E.M., Lu, S.X., Panchapakesan, B.: Thermal fluctuations, stress relaxation, and actuation in carbon nanotube networks. Phys. Rev. B Cond. Matt. Phys. 76, 165437/1–165437/6 (2007)Google Scholar
  23. 23.
    Ahir, S.V., Terentjev, E.M.: Photomechanical actuation in polymer-nanotube composites. Nat. Mater. 4, 491–495 (2005)CrossRefGoogle Scholar
  24. 24.
    Ahir, S.V., Terentjev, E.M.: Fast relaxation of carbon nanotubes in polymer composite actuators. Phys. Rev. Lett. 96, 133902/1–133902/4 (2006)CrossRefGoogle Scholar
  25. 25.
    Ahir, S.V., Squire, A.M., Tajbakhsh, A.R., Terentjev, E.M.: Infrared actuation in aligned polymer-nanotube composites. Phys. Rev. B Cond. Matt. Phys. 73, 085420/1–0854201/2 (2006)Google Scholar
  26. 26.
    Ahir, S., Huang, Y.Y., Terentjev, E.M.: Polymers with aligned carbon nanotubes: active composite materials. Polymer 49, 3841–3854 (2008)CrossRefGoogle Scholar
  27. 27.
    Zhang, X., Pint, C.L., Lee, M.H., Schubert, B.E., Jamshidi, A., Takei, K., Ko, H., Gillies, A., Bardhan, R., Urban, J.J., Wu, M., Fearing, R., Javey, A.: Optically- and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites. NanoLetters 11, 3239–3244 (2011)CrossRefGoogle Scholar
  28. 28.
    Lu, S.X., Panchapakesan, B.: Optically driven nanotube actuators. Nanotechnology 16, 2548–2554 (2005)CrossRefGoogle Scholar
  29. 29.
    Lu, S.X., Panchapakesan, B.: Nanotube micro-optomechanical actuators. Appl. Phys. Lett. 88, 253107/1–253107/3 (2006)Google Scholar
  30. 30.
    Flannigan, D.J., Zewail, A.H.: Optomechanical and crystallization phenomena visualized with 4D electron microscopy: interfacial carbon nanotubes on silicon nitride. NanoLetters 10, 1892–1899 (2010)CrossRefGoogle Scholar
  31. 31.
    Levitsky, I.A., Kanelos, P.T., Viola, E.A., Euler, W.B.: Photoactuation in nafion-carbon nanotube bilayer composites. Proc. SPIE Nanosens. Mater. Device II(6008), 600802/1–600802/6 (2005)Google Scholar
  32. 32.
    Levitsky, I.A., Kanelos, P.T., Woodbury, D.S., Euler, W.B.: Photoactuation from a carbon nanotube–nafion bilayer composite. J. Phys. Chem. B 110, 9421–9425 (2006)CrossRefGoogle Scholar
  33. 33.
    Viola, E.A., Levitsky, I.A., Euler, W.B.: Kinetics of photoactuation in single wall carbon nanotube–nafion bilayer composite. J. Phys. Chem. C 114, 20258–20266 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  • William B. Euler
    • 1
  1. 1.Department of ChemistryUniversity of Rhode IslandKingstonUSA

Personalised recommendations