Estimation Problems and Randomised Group Algorithms

  • Alice C. Niemeyer
  • Cheryl E. Praeger
  • Ákos Seress
Part of the Lecture Notes in Mathematics book series (LNM, volume 2070)


This chapter discusses the role of estimation in the design and analysis of randomised algorithms for computing with finite groups.An exposition is given of a variety of different approaches to estimating proportions of important element classes, including geometric methods, and the use of generating functions and the theory of Lie type groups.Numerous results concerning estimation in permutation groups and finite classical groups are surveyed.An application is given to the construction of involution centralisers, a crucial component in the constructive recognition of finite simple groups.


  1. 1.
    C. Altseimer, A.V. Borovik, Probabilistic Recognition of Orthogonal and Symplectic Groups, in Groups and Computation, III, vol. 8, Columbus, OH, 1999 (Ohio State University Mathematical Research Institute Publications/de Gruyter, Berlin, 2001), pp. 1–20Google Scholar
  2. 2.
    M. Aschbacher, On the maximal subgroups of the finite classical groups. Invent. Math. 76(3), 469–514 (1984)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    L. Babai, Local Expansion of Vertex-Transitive Graphs and Random Generation in Finite Groups, in 23rd ACM Symposium on Theory of Computing (ACM, New York, 1991), pp. 164–174Google Scholar
  4. 4.
    L. Babai, R. Beals, A Polynomial-Time Theory of Black Box Groups. I, in Groups St. Andrews 1997 in Bath, I. London Mathematical Society Lecture Note Series, vol. 260 (Cambridge University Press, Cambridge, 1999), pp. 30–64Google Scholar
  5. 5.
    L. Babai, E. Szemerédi, On the Complexity of Matrix Group Problems I, in 25th Annual Symposium on Foundations of Computer Science (IEEE Computer Society Press, Los Alamitos, 1984), pp. 229–240Google Scholar
  6. 6.
    L. Babai, W.M. Kantor, P.P. Pálfy, Á. Seress, Black-box recognition of finite simple groups of Lie type by statistics of element orders. J. Group Theor. 5(4), 383–401 (2002)MATHGoogle Scholar
  7. 7.
    L. Babai, R. Beals, Á. Seress, Polynomial-Time Theory of Matrix Groups, in 41st ACM Symposium on Theory of Computing, Bethesda, MD, 2009 (ACM, New York, 2009), pp. 55–64CrossRefGoogle Scholar
  8. 8.
    R. Beals, C.R. Leedham-Green, A.C. Niemeyer, C.E. Praeger, Á. Seress, Permutations with restricted cycle structure and an algorithmic application. Combin. Probab. Comput. 11(5), 447–464 (2002)MathSciNetMATHGoogle Scholar
  9. 9.
    R. Beals, C.R. Leedham-Green, A.C. Niemeyer, C.E. Praeger, Á. Seress, A black-box group algorithm for recognizing finite symmetric and alternating groups. I. Trans. Am. Math. Soc. 355(5), 2097–2113 (2003)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    D.E.-C. Ben-Ezra, Counting elements in the symmetric group, Int. J. Algebra Comput. 19(3), 305–313 (2009)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    E.A. Bender, Asymptotic methods in enumeration. SIAM Rev. 16, 485–515 (1974)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    E.A. Bertram, B. Gordon, Counting special permutations. Eur. J. Comb. 10(3), 221–226 (1989)MathSciNetMATHGoogle Scholar
  13. 13.
    E.D. Bolker, A.M. Gleason, Counting permutations. J. Comb. Theor. Ser. A 29(2), 236–242 (1980)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    M. Bóna, A. McLennan, D. White, Permutations with roots. Random Struct. Algorithm 17(2), 157–167 (2000)MATHCrossRefGoogle Scholar
  15. 15.
    W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput. 24, 235–265 (1997)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    J.N. Bray, An improved method for generating the centralizer of an involution. Arch. Math. (Basel) 74(4), 241–245 (2000)Google Scholar
  17. 17.
    R.W. Carter, Finite Groups of Lie Type (Wiley Classics Library, Wiley, Chichester, 1993), Conjugacy classes and complex characters, Reprint of the 1985 original, A Wiley-Interscience PublicationGoogle Scholar
  18. 18.
    F. Celler, C.R. Leedham-Green, S.H. Murray, A.C. Niemeyer, E.A. O’Brien, Generating random elements of a finite group. Comm. Algebra 23(13), 4931–4948 (1995)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    W.W. Chernoff, Solutions to x r = α in the alternating group. Ars Combin. 29(C), 226–227 (1990) (Twelfth British Combinatorial Conference, Norwich, 1989)Google Scholar
  20. 20.
    S. Chowla, I.N. Herstein, W.K. Moore, On recursions connected with symmetric groups. I. Can. J. Math. 3, 328–334 (1951)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    S. Chowla, I.N. Herstein, W.R. Scott, The solutions of x d = 1 in symmetric groups. Norske Vid. Selsk. Forh. Trondheim 25, 29–31 (1952/1953)Google Scholar
  22. 22.
    A.M. Cohen, S.H. Murray, An algorithm for Lang’s Theorem. J. Algebra 322(3), 675–702 (2009)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    A. de Moivre, The Doctrine of Chances: Or, A Method of Calculating the Probability of Events in Play, 2nd edn. (H. Woodfall, London, 1738)Google Scholar
  24. 24.
    J.D. Dixon, Generating random elements in finite groups. Electron. J. Comb. 15(1), Research Paper 94 (2008)Google Scholar
  25. 25.
    P. Dusart, The kth prime is greater than \(k(\ln k +\ln \ln k - 1)\) for k ≥ 2. Math. Comp. 68(225), 411–415 (2009)MathSciNetCrossRefGoogle Scholar
  26. 26.
    P. Erdős, M. Szalay, On Some Problems of the Statistical Theory of Partitions, in Number Theory, vol. I, Budapest, 1987. Colloq. Math. Soc. János Bolyai, vol. 51 (North-Holland, Amsterdam, 1990), pp. 93–110Google Scholar
  27. 27.
    P. Erdős, P. Turán, On some problems of a statistical group-theory. I. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 4, 175–186 (1965)CrossRefGoogle Scholar
  28. 28.
    P. Erdős, P. Turán, On some problems of a statistical group-theory. II. Acta Math. Acad. Sci. Hung. 18, 151–163 (1967)CrossRefGoogle Scholar
  29. 29.
    P. Erdős, P. Turán, On some problems of a statistical group-theory. III. Acta Math. Acad. Sci. Hung. 18, 309–320 (1967)CrossRefGoogle Scholar
  30. 30.
    P. Erdős, P. Turán, On some problems of a statistical group-theory. IV. Acta Math. Acad. Sci. Hung. 19, 413–435 (1968)CrossRefGoogle Scholar
  31. 31.
    P. Erdős, P. Turán, On some problems of a statistical group theory. VI. J. Indian Math. Soc. 34(3–4), 175–192 (1970/1971)Google Scholar
  32. 32.
    P. Erdős, P. Turán, On some problems of a statistical group theory. V. Period. Math. Hung. 1(1), 5–13 (1971)CrossRefGoogle Scholar
  33. 33.
    L. Euler, Calcul de la probabilité dans le jeu de rencontre. Mémoires de l’Academie des Sciences de Berlin, 7 (1751) 1753, pp. 255–270. Reprinted in Opera Omnia: Series 1, vol. 7, pp. 11–25. Available through The Euler Archive at
  34. 34.
    L. Euler, Solutio Quaestionis curiosae ex doctrina combinationum. Mémoires de l’Académie des Sciences de St.-Petersbourg, 3:57–64, 1811. Reprinted in Opera Omnia: Series 1, vol. 7, pp. 435–440. Available through The Euler Archive at
  35. 35.
    P. Flajolet, R. Sedgewick, Analytic Combinatorics (Cambridge University Press, Cambridge, 2009)MATHCrossRefGoogle Scholar
  36. 36.
    J. Fulman, P.M. Neumann, C.E. Praeger, A generating function approach to the enumeration of matrices in classical groups over finite fields. Mem. Am. Math. Soc. 176(830), vi+90 (2005)Google Scholar
  37. 37.
    The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.5.2(beta), 2011,
  38. 38.
    S.P. Glasby, Using recurrence relations to count certain elements in symmetric groups. Eur. J. Comb. 22(4), 497–501 (2001)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    W.M.Y. Goh, E. Schmutz, The expected order of a random permutation. Bull. Lond. Math. Soc. 23(1), 34–42 (1991)MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    V. Gončarov, On the field of combinatory analysis. Am. Math. Soc. Transl. 19(2), 1–46 (1962)Google Scholar
  41. 41.
    D. Gorenstein, R. Lyons, R. Solomon, The Classification of the Finite Simple Groups. Mathematical Surveys and Monographs, vol. 40 (American Mathematical Society, Providence, 1994)Google Scholar
  42. 42.
    O. Gruder, Zur Theorie der Zerlegung von Permutationen in Zyklen. Ark. Mat. 2(5), 385–414 (1953)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    W.K. Hayman, A generalisation of Stirling’s formula. J. Reine Angew. Math. 196, 67–95 (1956)MathSciNetMATHGoogle Scholar
  44. 44.
    R.B. Herrera, The number of elements of given period in finite symmetric groups. Am. Math. Mon. 64, 488–490 (1957)MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    P.E. Holmes, S.A. Linton, E.A. O’Brien, A.J.E. Ryba, R.A. Wilson, Constructive membership in black-box groups. J. Group Theor. 11(6), 747–763 (2008)MathSciNetMATHGoogle Scholar
  46. 46.
    I.M. Isaacs, W.M. Kantor, N. Spaltenstein, On the probability that a group element is p-singular. J. Algebra 176(1), 139–181 (1995)MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    E. Jacobsthal, Sur le nombre d’éléments du groupe symétrique S n dont l’ordre est un nombre premier. Norske Vid. Selsk. Forh. Trondheim 21(12), 49–51 (1949)MathSciNetMATHGoogle Scholar
  48. 48.
    W.M. Kantor, Á. Seress, Black box classical groups. Mem. Am. Math. Soc. 149(708), viii+168 (2001)Google Scholar
  49. 49.
    A.V. Kolchin, Equations that contain an unknown permutation. Diskret. Mat. 6(1), 100–115 (1994)MathSciNetGoogle Scholar
  50. 50.
    V.F. Kolchin, Random Graphs. Encyclopedia of Mathematics and Its Applications, vol. 53 (Cambridge University Press, Cambridge, 1999)Google Scholar
  51. 51.
    E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen. 2 Bände, 2nd edn. (Chelsea Publishing Co., New York, 1953), With an appendix by Paul T. BatemanGoogle Scholar
  52. 52.
    C.R. Leedham-Green, The Computational Matrix Group Project, in Groups and Computation, III, vol. 8, Columbus, OH, 1999 (Ohio State University Mathematical Research Institute Publications/de Gruyter, Berlin, 2001), pp. 229–247Google Scholar
  53. 53.
    C.R. Leedham-Green, E.A. O’Brien, Constructive recognition of classical groups in odd characteristic. J. Algebra 322(3), 833–881 (2009)MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    G.I. Lehrer, Rational tori, semisimple orbits and the topology of hyperplane complements. Comment. Math. Helv. 67(2), 226–251 (1992)MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    G.I. Lehrer, The cohomology of the regular semisimple variety. J. Algebra 199(2), 666–689 (1998)MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    M.W. Liebeck, E.A. O’Brien, Finding the characteristic of a group of Lie type. J. Lond. Math. Soc. (2) 75(3), 741–754 (2007)Google Scholar
  57. 57.
    M.W. Liebeck, A. Shalev, The probability of generating a finite simple group. Geom. Dedicata 56(1), 103–113 (1995)MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    F. Lübeck, A.C. Niemeyer, C.E. Praeger, Finding involutions in finite Lie type groups of odd characteristic. J. Algebra 321(11), 3397–3417 (2009)MathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    E.M. Luks, Permutation Groups and Polynomial-Time Computation, in Groups and computation, New Brunswick, NJ, 1991. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 11 (American Mathematical Society, Providence, 1993), pp. 139–175Google Scholar
  60. 60.
    R. Lyons, Evidence for a new finite simple group. J. Algebra 20, 540–569 (1972)MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    A. Maróti, Symmetric functions, generalized blocks, and permutations with restricted cycle structure. Eur. J. Comb. 28(3), 942–963 (2007)MATHCrossRefGoogle Scholar
  62. 62.
    N. Metropolis, The beginnings of the Monte Carlo method. Los Alamos Sci. 15 (Special Issue), 125–130 (1987)Google Scholar
  63. 63.
    M.P. Mineev, A.I. Pavlov, The number of permutations of a special form. Mat. Sb. (N.S.) 99(141)(3), 468–476, 480 (1976)Google Scholar
  64. 64.
    P.R. de Monmort, Essay d’analyse sur les jeux de hazard (J. Quillau, Paris, 1708)Google Scholar
  65. 65.
    P.R. de Monmort, Essay d’analyse sur les jeux de hazard, 2nd edn. (J. Quillau, Paris, 1713)Google Scholar
  66. 66.
    L. Moser, M. Wyman, On solutions of x d = 1 in symmetric groups. Can. J. Math. 7, 159–168 (1955)MathSciNetMATHCrossRefGoogle Scholar
  67. 67.
    L. Moser, M. Wyman, Asymptotic expansions. Can. J. Math. 8, 225–233 (1956)MathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    L. Moser, M. Wyman, Asymptotic expansions. II. Can. J. Math. 9, 194–209 (1957)MathSciNetMATHGoogle Scholar
  69. 69.
    P.M. Neumann, C.E. Praeger, A recognition algorithm for special linear groups. Proc. Lond. Math. Soc. (3) 65 (3), 555–603 (1992)Google Scholar
  70. 70.
    P.M. Neumann, C.E. Praeger, Cyclic matrices over finite fields. J. Lond. Math. Soc. (2) 52, 263–284 (1995)Google Scholar
  71. 71.
    A.C. Niemeyer, T. Popiel, C.E. Praeger, Abundant p-singular elements in finite classical groups, preprint (2012)
  72. 72.
    A.C. Niemeyer, C.E. Praeger, A recognition algorithm for classical groups over finite fields. Proc. Lond. Math. Soc. (3) 77 (1), 117–169 (1998)Google Scholar
  73. 73.
    A.C. Niemeyer, C.E. Praeger, On the frequency of permutations containing a long cycle. J. Algebra 300(1), 289–304 (2006)MathSciNetMATHCrossRefGoogle Scholar
  74. 74.
    A.C. Niemeyer, C.E. Praeger, On permutations of order dividing a given integer. J. Algebr. Comb. 26(1), 125–142 (2007)MathSciNetMATHCrossRefGoogle Scholar
  75. 75.
    A.C. Niemeyer, C.E. Praeger, On the proportion of permutations of order a multiple of the degree. J. Lond. Math. Soc. (2) 76(3), 622–632 (2007)Google Scholar
  76. 76.
    A.C. Niemeyer, C.E. Praeger, Estimating proportions of elements in finite groups of Lie type. J. Algebra 324(1), 122–145 (2010)MathSciNetMATHCrossRefGoogle Scholar
  77. 77.
    E.A. O’Brien, Algorithms for Matrix Groups, in Groups St. Andrews 2009 in Bath, vol. 2. London Mathematical Society Lecture Note Series, vol. 388 (Cambridge University Press, Cambridge, 2011), pp. 297–323Google Scholar
  78. 78.
    C.W. Parker, R.A. Wilson, Recognising simplicity of black-box groups by constructing involutions and their centralisers. J. Algebra 324(5), 885–915 (2010)MathSciNetMATHCrossRefGoogle Scholar
  79. 79.
    E.T. Parker, P.J. Nikolai, A search for analogues of the Mathieu groups. Math. Tables Aids Comput. 12, 38–43 (1958)MathSciNetCrossRefGoogle Scholar
  80. 80.
    A.I. Pavlov, An equation in a symmetric semigroup. Trudy Mat. Inst. Steklov. 177, 114–121, 208 (1986); Proc. Steklov Inst. Math. 1988(4), 121–129, Probabilistic problems of discrete mathematicsGoogle Scholar
  81. 81.
    A.I. Pavlov, On permutations with cycle lengths from a fixed set. Theor. Probab. Appl. 31, 618–619 (1986)Google Scholar
  82. 82.
    W. Plesken, D. Robertz, The average number of cycles. Arch. Math. (Basel) 93(5), 445–449 (2009)Google Scholar
  83. 83.
    C.E. Praeger, On elements of prime order in primitive permutation groups. J. Algebra 60(1), 126–157 (1979)MathSciNetMATHCrossRefGoogle Scholar
  84. 84.
    C.E. Praeger, Á. Seress, Probabilistic generation of finite classical groups in odd characteristic by involutions. J. Group Theor. 14(4), 521–545 (2011)MathSciNetMATHGoogle Scholar
  85. 85.
    C.E. Praeger, Á. Seress, Balanced involutions in the centralisers of involutions in finite general linear groups of odd characteristic (in preparation)Google Scholar
  86. 86.
    C.E. Praeger, Á. Seress, Regular semisimple elements and involutions in finite general linear groups of odd characteristic. Proc. Am. Math. Soc. 140, 3003–3015 (2012)MathSciNetCrossRefGoogle Scholar
  87. 87.
    Á. Seress, Permutation Group Algorithms. Cambridge Tracts in Mathematics, vol. 152 (Cambridge University Press, Cambridge, 2003)Google Scholar
  88. 88.
    C.C. Sims, Computational Methods in the Study of Permutation Groups, in Computational Problems in Abstract Algebra, Proceedings of the Conference, Oxford, 1967 (Pergamon, Oxford, 1970), pp. 169–183Google Scholar
  89. 89.
    C.C. Sims, The Existence and Uniqueness of Lyons’ Group, in Finite groups ’72, Proceedings of the Gainesville Conference, University of Florida, Gainesville, FL, 1972. North–Holland Mathematical Studies, vol. 7 (North-Holland, Amsterdam, 1973), pp. 138–141Google Scholar
  90. 90.
    A.N. Timashev, Random permutations with cycle lengths in a given finite set. Diskret. Mat. 20(1), 25–37 (2008)MathSciNetGoogle Scholar
  91. 91.
    J. Touchard, Sur les cycles des substitutions. Acta Math. 70(1), 243–297 (1939)MathSciNetCrossRefGoogle Scholar
  92. 92.
    L.M. Volynets, The number of solutions of the equation x s = e in a symmetric group. Mat. Zametki 40(2), 155–160, 286 (1986)Google Scholar
  93. 93.
    R. Warlimont, Über die Anzahl der Lösungen von x n = 1 in der symmetrischen Gruppe S n. Arch. Math. (Basel) 30 (6), 591–594 (1978)Google Scholar
  94. 94.
    H. Wielandt, Finite Permutation Groups, Translated from the German by R. Bercov (Academic, New York, 1964)MATHGoogle Scholar
  95. 95.
    H.S. Wilf, The asymptotics of e P(z) and the number of elements of each order in S n. Bull. Am. Math. Soc. (N.S.) 15 (2), 228–232 (1986)Google Scholar
  96. 96.
    H.S. Wilf, Generatingfunctionology, 2nd edn. (Academic, Boston, 1994)MATHGoogle Scholar
  97. 97.
    K. Zsigmondy, Zur Theorie der Potenzreste. Monatsh. für Math. U. Phys. 3, 265–284 (1892)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Alice C. Niemeyer
    • 1
  • Cheryl E. Praeger
    • 1
    • 2
  • Ákos Seress
    • 1
    • 3
  1. 1.Centre for the Mathematics of Symmetry and Computation, School of Mathematics and StatisticsThe University of Western AustraliaCrawleyAustralia
  2. 2.King Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.The Ohio State UniversityColumbusUSA

Personalised recommendations