Residual Generation with Enhanced Robustness Against Model Uncertainties

  • Steven X. Ding
Part of the Advances in Industrial Control book series (AIC)

Abstract

Chapter 8 is dedicated to the most challenging topic on the mode-based residual generation, that is, residual generation based on a model with uncertainties. To this end, preliminary knowledge of advanced LMI technique and stability of systems with stochastic uncertainties is first introduced. The core of this chapter is the reference model based residual generation strategy, in which the unified solution presented in Chap.  7 serves as the reference model delivering a reference residual signal. The residual generator design is then realized on the basis of a minimization of the difference between the reference and real residual signals. This strategy is applied to the FDF design for systems with norm-bounded uncertainties, polytopic uncertainties, and stochastic uncertainties.

References

  1. 16.
    Boyd, S., Ghaoui, L., Feron, E.: Linear Matrix Inequalities in Systems and Control Theory. SIAM, Philadelphia (1994) CrossRefGoogle Scholar
  2. 21.
    Casavola, A., Famularo, D., Fraze, G.: A robust deconvolution scheme for fault detection and isolation of uncertain linear systems: An LMI approach. Automatica 41, 1463–1472 (2005) MATHCrossRefGoogle Scholar
  3. 22.
    Casavola, A., Famularo, D., Franze, G.: Robust fault detection of uncertain linear systems via quasi-LMIs. Automatica 44, 289–295 (2008) MathSciNetMATHCrossRefGoogle Scholar
  4. 26.
    Chen, J., Patton, R.J.: Standard H formulation of robust fault detection. In: Proc. of the 4th IFAC Symp. SAFEPROCESS, pp. 256–261 (2000) Google Scholar
  5. 66.
    Frisk, E., Nielsen, L.: Robust residual generation for diagnosis including a reference model for residual behavior. Automatica 42, 437–445 (2006) MathSciNetMATHCrossRefGoogle Scholar
  6. 88.
    Henry, D., Zolghadri, A.: Design and analysis of robust residual generators for systems under feedback control. Automatica 41, 251–264 (2005) MathSciNetMATHCrossRefGoogle Scholar
  7. 120.
    Mangoubi, R.: Robust Estimation and Failure Detection. Springer, New York (1998) CrossRefGoogle Scholar
  8. 126.
    Murad, G., Postlethwaite, I., Gu, D.-W.: A robust design approach to integrated control and diagnostics. In: Proc. of the 13th IFAC Word Congress, vol. 7, pp. 199–204 (1996) Google Scholar
  9. 148.
    Rank, M.L., Niemann, H.: Norm based design of fault detectors. Internat. J. Control 72(9), 773–783 (1999) MathSciNetMATHCrossRefGoogle Scholar
  10. 151.
    Sadrnia, M., Patton, R., Chen, J.: Robust H/Hμ fault diagnosis observer design. In: Proc. of ECC’ 97 (1997) Google Scholar
  11. 154.
    Scherer, C., Gahinet, P., Chilali, M.: Multiobjective output-feedback control via LMI optimization. IEEE Trans. Automat. Control 42(7), 896–911 (1997) MathSciNetMATHCrossRefGoogle Scholar
  12. 160.
    Stoustrup, J., Grimble, M., Niemann, H.: Design of integrated systems for the control and detection of actuator/sensor faults. Sens. Rev. 17, 138–149 (1997) CrossRefGoogle Scholar
  13. 179.
    Wang, Y., Xie, L., de Souza, C.E.: Robust control of a class of uncertain nonlinear systems. Systems Control Lett. 19, 139–149 (1992) MathSciNetCrossRefGoogle Scholar
  14. 196.
    Zhong, M., Ding, S., Lam, J., Wang, H.: An LMI approach to design robust fault detection filter for uncertain LTI systems. Automatica 39, 543–550 (2003) MathSciNetMATHCrossRefGoogle Scholar
  15. 199.
    Zhou, K., Doyle, J., Glover, K.: Robust and Optimal Control. Prentice-Hall, New Jersey (1996) MATHGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Steven X. Ding
    • 1
  1. 1.Inst. Automatisierungstechnik und Komplexe Systeme (AKS)Universität Duisburg-EssenDuisburgGermany

Personalised recommendations