Fault Identification Schemes

  • Steven X. Ding
Part of the Advances in Industrial Control book series (AIC)


Fault identification (also called fault estimation) is often integrated into a fault-tolerant system and thus receiving considerable attention in the integrated design of control and fault diagnosis. The first part of this chapter is dedicated to the study on a perfect or optimal fault recovery (estimation/identification) without any assumption on faults to be estimated. The result with the existence conditions for a perfect fault identification reveals the difficulty with a successful fault identification. Also, an \(\mathcal{H}_{\infty}\) optimal design of a fault identification filter (FIF) can only be achieved on some hard conditions. For this reason, alternative fault identification schemes are proposed. They are: identification of the size of the fault (instead of the fault itself), fault estimation in a finite frequency interval, fault estimation in the PA framework, fault identification using an augmented observer, and the adaptive observer-based fault identification.


Existence Condition Fault Identification Sensor Fault Fault Estimation Fault Isolation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 3.
    Alwi, H., Edwards, C., Tan, C.P.: Fault Detection and Fault-Tolerant Control Using Sliding Modes. Springer, Berlin (2011) MATHCrossRefGoogle Scholar
  2. 8.
    Aström, K.J., Wittenmark, B.: Adaptive Control. Addison-Wesley, Reading (1995) MATHGoogle Scholar
  3. 17.
    Busawon, K., Kabore, P.: Disturbance attenuation using proportional integral observers. Internat. J. Control 74, 618–627 (2001) MathSciNetMATHCrossRefGoogle Scholar
  4. 27.
    Chen, W., Saif, M.: A sliding mode observer-based strategy for fault detection, isolation, and estimation in a class of Lipschitz nonlinear systems. Internat. J. Systems Sci. 38, 943–955 (2007) MathSciNetCrossRefGoogle Scholar
  5. 45.
    Ding, X.: Frequency Domain Methods for Observer Based Fault Detection (in German). VDI Verlag, Düsseldorf (1992) Google Scholar
  6. 47.
    Ding, X., Frank, P.M.: Fault detection via factorization approach. Syst. Control Lett. 14, 431–436 (1990) MathSciNetMATHCrossRefGoogle Scholar
  7. 49.
    Ding, X., Frank, P.M.: An adaptive observer-based fault detection scheme for nonlinear systems. In: Proceedings of the 12th IFAC World Congress, Sydney, pp. 307–312 (1993) Google Scholar
  8. 50.
    Ding, X., Frank, P., Guo, L.: Fault detection via adaptive observer based on orthogonal functions. In: Proceedings of the IFAC Symposium AIPAC89, Nancy (1989) Google Scholar
  9. 59.
    Francis, B.A.: A Course in H Control Theory. Springer, Berlin (1987) MATHCrossRefGoogle Scholar
  10. 69.
    Gao, Z., Ding, S.X.: Actuator fault robust estimation and fault-tolerant control for a class of nonlinear descriptor systems. Automatica 43, 912–920 (2007) MathSciNetMATHCrossRefGoogle Scholar
  11. 70.
    Gao, Z., Ho, D.W.C.: State/noise estimator for descriptor systems with application to sensor fault diagnosis. IEEE Trans. Signal Process. 54, 1316–1326 (2006) CrossRefGoogle Scholar
  12. 71.
    Gao, Z., Ho, D.: Proportional multiple-integral observer design for descriptor systems with measurement output disturbances. IEE Proc., Control Theory Appl. 151(3), 279–288 (2004) CrossRefGoogle Scholar
  13. 72.
    Gao, Z., Shi, X., Ding, S.: Fuzzy state/disturbance observer design for t–s fuzzy systems with application to sensor fault estimation. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 38, 875–880 (2008) CrossRefGoogle Scholar
  14. 79.
    Gertler, J.: Survey of model-based failure detection and isolation in complex plants. IEEE Control Syst. Mag. 3, 3–11 (1988) CrossRefGoogle Scholar
  15. 80.
    Glover, K.: All optimal Hankel-norm approximations of linear multivariable systems and their L error bounds. Internat. J. Control 39, 1115–1193 (1984) MathSciNetMATHCrossRefGoogle Scholar
  16. 86.
    Ha, Q.P., Trinh, H.: State and input simultaneous estimation for a class of nonlinear systems. Automatica 40, 1779–1785 (2004) MathSciNetMATHCrossRefGoogle Scholar
  17. 92.
    Hou, M., Patton, R.J.: Input observability and input reconstruction. Automatica 34, 789–794 (1998) MathSciNetMATHCrossRefGoogle Scholar
  18. 95.
    Hung, Y.S.: H interpolation of rational matrices. Internat. J. Control 48, 1659–1713 (1988) MathSciNetMATHCrossRefGoogle Scholar
  19. 96.
    Isermann, R.: Process fault detection based on modeling and estimation methods – A survey. Automatica 20, 387–404 (1984) MATHCrossRefGoogle Scholar
  20. 97.
    Isermann, R.: Supervision, fault-detection and fault-diagnosis methods – An introduction. Control Eng. Pract. 5(5), 639–652 (1997) CrossRefGoogle Scholar
  21. 98.
    Isermann, R.: Fault Diagnosis Systems. Springer, Berlin (2006) Google Scholar
  22. 101.
    Jiang, B., Staroswiecki, M.: Adaptive observer design for robust fault estimation. Internat. J. Systems Sci. 33, 767–775 (2002) MathSciNetMATHCrossRefGoogle Scholar
  23. 102.
    Jiang, B., Staroswiecki, M., Cocquempot, V.: Fault diagnosis based on adaptive observer for a class of non-linear systems with unknown parameters. Internat. J. Control 77, 415–426 (2004) MathSciNetMATHCrossRefGoogle Scholar
  24. 126.
    Murad, G., Postlethwaite, I., Gu, D.-W.: A robust design approach to integrated control and diagnostics. In: Proc. of the 13th IFAC Word Congress, vol. 7, pp. 199–204 (1996) Google Scholar
  25. 127.
    Nett, C.N., Jacobson, C., Miller, A.T.: An integrated approach to controls and diagnostics. In: Proc. of ACC, pp. 824–835 (1988) Google Scholar
  26. 128.
    Nguang, S.K., Shi, P., Ding, S.X.: Delay-dependent fault estimation for uncertain nonlinear systems: An LMI approach. Internat. J. Robust Nonlinear Control 16, 913–933 (2006) MathSciNetMATHCrossRefGoogle Scholar
  27. 129.
    Nguang, S.K., Zhang, P., Ding, S.X.: Parity relation based fault estimation for nonlinear systems: An LMI approach. Int. J. Autom. Comput. 4, 189–194 (2007) CrossRefGoogle Scholar
  28. 130.
    Niemann, H., Saberi, A., Stoovogel, A., Sannuti, P.: Optimal fault estimation. In: Proc. of the 4th IFAC Symp. SAFEPROCESS, vol. 1, pp. 262–267 (2000) Google Scholar
  29. 133.
    Niemann, H., Stoustrup, J.J.: Design of fault detectors using H optimization. In: Proc. of the 39th IEEE CDC (2000) Google Scholar
  30. 138.
    Park, Y., Stein, J.L.: Closed-loop, state and inputs observer for systems with unknown inputs. Internat. J. Control 48, 1121–1136 (1988) MathSciNetMATHCrossRefGoogle Scholar
  31. 149.
    Saberi, A., Stoovogel, P.S.A.A., Niemann, H.: Fundamental problems in fault detection and identification. Internat. J. Robust Nonlinear Control 10, 1209–1236 (2000) MathSciNetMATHCrossRefGoogle Scholar
  32. 152.
    Saif, M.: Reduced-order proportional integral observer with application. J. Guid. Control Dyn. 16, 985–988 (1993) MATHCrossRefGoogle Scholar
  33. 156.
    Shafai, B., Pi, C.T., Nork, S.: Simultaneous disturbance attenuation and fault detection using proportional integral observers. In: Proc. ACC, pp. 1647–1649 (2002) Google Scholar
  34. 157.
    Simani, S., Fantuzzi, S., Patton, R.J.: Model-Based Fault Diagnosis in Dynamic Systems Using Identification Techniques. Springer, London (2003) Google Scholar
  35. 161.
    Tan, C., Edwards, C.: Sliding mode observers for detection and reconstruction of sensor faults. Automatica 38, 1815–1821 (2002) MathSciNetMATHCrossRefGoogle Scholar
  36. 165.
    Tyler, M.L., Morari, M.: Optimal and robust design of integrated control and diagnostic modules. In: Proc. of ACC, pp. 2060–2064 (1994) Google Scholar
  37. 172.
    Wang, H., Daley, S.: Actuator fault diagnosis: An adaptive observer-based technique. IEEE Trans. Automat. Control 41, 1073–1078 (1996) MathSciNetMATHCrossRefGoogle Scholar
  38. 173.
    Wang, H., Huang, Z.J., Daley, S.: On the use of adaptive updating rules for actuator and sensor fault diagnosis. Automatica 33, 217–225 (1997) MathSciNetMATHCrossRefGoogle Scholar
  39. 174.
    Wang, H., Yang, G.-H.: Fault estimations for uncertain linear discrete-time systems in low frequency domain. In: Proc. of the 2007 ACC, pp. 1124–1129 (2007) Google Scholar
  40. 175.
    Wang, H., Yang, G.-H.: Fault estimations for linear systems with polytopic uncertainties. Int. J. Syst. Control Commun. 1, 53–71 (2008) CrossRefGoogle Scholar
  41. 192.
    Zhang, Q.: Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems. IEEE Trans. Automat. Control 47, 525–529 (2002) MathSciNetCrossRefGoogle Scholar
  42. 194.
    Zhang, X.D., Polycarpou, M.M., Parisini, T.: A robust detection and isolation scheme for abrupt and incipient faults in nonlinear systems. IEEE Trans. Automat. Control 47, 576–593 (2002) MathSciNetMATHCrossRefGoogle Scholar
  43. 195.
    Zhong, M., Ding, S.X., Han, Q., Ding, Q.: Parity space-based fault estimation for linear discrete time-varying systems. IEEE Trans. Automat. Control 55, 1726–1731 (2010) MathSciNetCrossRefGoogle Scholar
  44. 197.
    Zhou, D.H., Frank, P.M.: Strong tracking filtering of nonlinear time-varying stochastic systems with coloured noise: Application to parameter estimation and empirical robustness analysis. Internat. J. Control 65, 295–307 (1996) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Steven X. Ding
    • 1
  1. 1.Inst. Automatisierungstechnik und Komplexe Systeme (AKS)Universität Duisburg-EssenDuisburgGermany

Personalised recommendations