DCT-Based Blind Watermarking of 3D Models

Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 208)


To propose robust blind watermarking methods of 3D models based on DCT. First a 3D mesh models will be mapped to a 2D parametric mesh with a kind of planar parameterization method, geometric signals are then transformed into 2D signals. Then a DCT-based watermark scheme is proposed to embed the watermark into some DCT coefficients. The watermark can be detected without the original 3D models. Experimental results show that the embedded watermark is robust against various geometry signal processing.


Digital watermarking 3D mesh model Planar parameterization Discrete cosine transform 


  1. 1.
    Anderson RJ (1996) Information hiding: first international workshop, vol 2. Springer, Berlin, pp 30–38Google Scholar
  2. 2.
    Zhao J, Koch E, Luo C (1998) In business today and tomorrow. Commun ACM 41(7):67–72CrossRefGoogle Scholar
  3. 3.
    Memon N, Wong PW (1998) Protecting digital media content. Commun ACM 41(7):35–43CrossRefGoogle Scholar
  4. 4.
    Bender W, Gruhl D, Morimoto N (1996) Techniques for data hiding. IBM Syst J 35(3–4):72–79Google Scholar
  5. 5.
    Jin LH, Li H, Song EM, Xu XY (2010) Impulsive noise removal using switching scheme and adaptive weighted median filters. Opt Eng 49(1):1–7CrossRefGoogle Scholar
  6. 6.
    Plataniotis KN, Androutsos D, Venetsanopoulos ANN et al (1996) An adaptive nearest neighbor multichannel filter. IEEE Trans Circuits Syst Video Technol 6(6):699–703CrossRefGoogle Scholar
  7. 7.
    Cox IJ, Kilian J, Leighton T, Shamoon T (1997) Secure spread spectrum watermarking for multimedia. IEEE Trans Image Process 6(12):1673–1687CrossRefGoogle Scholar
  8. 8.
    Hartung F, Kutter M (1999) Multimedia watermarking techniques. Proc IEEE 87(7):1079–1107CrossRefGoogle Scholar
  9. 9.
    Lukac R (2003) Adaptive vector median filtering. Pattern Recogn Lett 24(12):1889–1899CrossRefGoogle Scholar
  10. 10.
    Jin LH, Li DH (2007) An efficient color impulse detector and its application to color images. IEEE Signal Process Lett 14(6):397–400MathSciNetCrossRefGoogle Scholar
  11. 11.
    Jin LH, Li H, Xu XY, Song EM (2010) Quaternion-based color image filtering for impulsive noise suppression. J Electron Imaging 19(4):1–12MATHCrossRefGoogle Scholar
  12. 12.
    Pan J-S, Huang H-C, Jain LC, Fang W-C (eds) (2007) Intelligent multimedia data hiding: new directions, vol 9(8). Springer, Heidelberg, pp 467–475Google Scholar
  13. 13.
    Andreadis I, Louverdis G, Chatzianagnostou S (2004) New fuzzy color median filter. J Intell Rob Syst 41:315–330Google Scholar
  14. 14.
    Sangwine SJ (2000) Colour image filters based on hypercomplex convolution. IEEE Proc Vision Image Signal Process 147(2):89–93CrossRefGoogle Scholar
  15. 15.
    Sangwine SJ (1998) Coulour image edge detector based on quaternion convolution. Electornics Lett 34(10):969–971CrossRefGoogle Scholar
  16. 16.
    Jelali M, Kroll A (2003) Hydraulic servo-system modeling, identification and control. Springer, New YorkGoogle Scholar
  17. 17.
    Kim MY, Lee C-O (2006) An experimental study on the optimization of controller gains for an electro-hydraulic servo system using evolution strategies. Control Eng Pract 14(2):127–147CrossRefGoogle Scholar
  18. 18.
    Sun H, Chiu GT-C (2002) Motion synchronization for dual-cylinder electro hydraulic lift systems. IEEE/ASME Trans Mechatron 7(2):171–181CrossRefGoogle Scholar
  19. 19.
    Chen CY, Liu LQ, Cheng CC, Chiu GTC (2008) Fuzzy controller designs for synchronous motion in a dual-cylinder electro-hydraulic system. Control Eng Pract 16(6):658–673CrossRefGoogle Scholar
  20. 20.
    Berger M (1996) Self-tuning of a PI controller using fuzzy logic for a construction unit testing apparatus. Control Eng Pract 4(6):785–790CrossRefGoogle Scholar
  21. 21.
    Cheng CC, Chen C-Y (1998) A PID approach to suppressing stick-slip in the positioning of transmission mechanisms. Control Eng Pract 6(4):471–479CrossRefGoogle Scholar
  22. 22.
    Franklin GF, Powell JD, Emanmi-Naeini A (1991) Feedback control of dynamic system. Addison-Wesley publishing company, New YorkGoogle Scholar
  23. 23.
    Nathans J, Thomas D, Hogness DS (1986) Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science 232:193–202CrossRefGoogle Scholar
  24. 24.
    Feng T, Xiang W, Jingao L (2008) Research and realization of innovative LED illumination system for DLP projector. In: Audio, language and image processing. International conference on ICALIP 2008, vol 1, pp 194–199Google Scholar
  25. 25.
    Hunt RWG, Pointer MR (1985) A color-apperarance transform for the CIE 1931 standard colorimetric observer. Color Res Appl 10:165–179CrossRefGoogle Scholar
  26. 26.
    Cai S, Shen X-K (2011) Octree-based robust watermarking for 3D model. J Multimedia 6(1):83–90Google Scholar
  27. 27.
    Van Kessel PF (2001) Electronics for DLP TM technology based projection systems. In: Symposium on VLSI technology digest of technical papers, pp 91–94Google Scholar
  28. 28.
    Kalivas A, Tefas A, Pitas I (2003) Watermarking of 3D models using principal component analysis. In: Proceeding of acoustics, speech and signal processing(ICASSP’03), vol 4. ACM Press, NY, pp 676–679Google Scholar
  29. 29.
    Zhou K, Bao FJ, Shi JY (2002) A unified framework for digital geometry processing. Chin J Comput 25(9):904–909Google Scholar
  30. 30.
    Zhou K, Bao FJ, Shi JY (2003) 3D surface filtering using spherical harmonics. Comput Aided Design 3(3):478–487Google Scholar
  31. 31.
    Barini M, Bartolini F, Cappellini V, Piva A (1998) A DCT-domain system for robust image watermarking. Signal Process 66:357–372CrossRefGoogle Scholar
  32. 32.
    Praun E, Hoppe H, Finkelstein A (1999) Robust mesh watermarking. SIGGRAPH Proc 4:69–76Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Hangzhou Vocational and Technical CollegeHangzhouChina
  2. 2.Zhejiang Gongshang UniversityHangzhouChina

Personalised recommendations