Huang Diffuse Scattering from Small Planar Dislocation Loops

  • Zhongfu Zhou
  • Yaru Zhang
  • Adrian P. Sutton
  • Sergei L. Dudarev
  • Michael L. Jenkins
  • Mark A. Kirk
  • George N. Greaves
  • Lixin Xiao
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 206)

Abstract

This paper gives out a theoretical framework of electron/X-ray Huang diffuse scattering intensity at the immediate vicinity of Bragg reflection in reciprocal space. Nodal lines of two types in the simulated patterns of Huang diffuse scattering intensity are discussed in connection with a loop shape factor and the Huang diffuse scattering intensity from infinitesimal loops. It is suggested that the Huang diffuse scattering method is supplementary to the conventional TEM amplitude contrast imaging techniques and it has advantages in characterizing the morphology of very small dislocation loop when other methods fail.

Keywords

Dislocation loops Diffuse scattering Huang diffuse scattering Kinematical theory 

References

  1. 1.
    Singh BN, Horsewell A, Toft P, Edward DJ (1995) The numerical difference method of the second moment equation. J Mate 224:131–133Google Scholar
  2. 2.
    Sinno T, Dornberger E (2000) Light from Si via dislocation loops. Mater Today 28:149–152Google Scholar
  3. 3.
    Shen DY, Chen JA (1999) Study on the scintillation of optical study on the scintillation of optical wave propagation. J Mater Res 148(15):79–81Google Scholar
  4. 4.
    Fortuna F, Borodin VA (2011) Origin of dislocation loops. Phys Rev 84:144–148CrossRefGoogle Scholar
  5. 5.
    Ng L, Lourenco MA (2001) Dislocation loops in pressureless-sintered undoped BaTiO3 ceramics. Nature 410:192–194Google Scholar
  6. 6.
    Lourenco MA, Milosavljevic M (2005) Surprises in diffuse scattering. J Am Ceram Soc 87:106–109Google Scholar
  7. 7.
    Milosavljevic M, Lourenco MA (2011) Non-mean-field theories of short range order and diffuse scattering anomalies in disordered. Economic Impact Study 10:110–113Google Scholar
  8. 8.
    Arakawa K, Ono K, Isshiki M, Mimura K, Uchikosh M, Mori H (2007) Kinematical theory of spinning particles. Science 318:956–959CrossRefGoogle Scholar
  9. 9.
    Jenkins ML, Kirk MA (2001) Characterisation of radiation damage by transmission electron microscopy. Inst Phys 13:155–160Google Scholar
  10. 10.
    Zhou Z, Jenkins ML, Dudarev SL, Sutton AP, Kirk MA (2006) Monte carlo study of short-range order and displacement effects in disordered CuAu. AAPG Explor 86:4882–4895Google Scholar
  11. 11.
    Kirk MA, Jenkins ML, Zhou Z, Twesten RD, Sutton AP, Dudarev SL, Davidson RS (2006) Kinematical theory of spinning particles. AAPG Explor 86:4797–4799Google Scholar
  12. 12.
    Zhou Z, Sutton AP, Dudarev SL, Jenkins ML, Kirk MA (2005) Surprises in diffuse scattering. J Appl Phys 461:3935–3940MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Zhongfu Zhou
    • 1
    • 2
    • 3
  • Yaru Zhang
    • 4
  • Adrian P. Sutton
    • 5
  • Sergei L. Dudarev
    • 6
  • Michael L. Jenkins
    • 7
  • Mark A. Kirk
    • 8
  • George N. Greaves
    • 9
  • Lixin Xiao
    • 10
  1. 1.Key Laboratory for Material MicrostructuresShanghai UniversityShanghaiChina
  2. 2.Department of MaterialsUniversity of OxfordOxfordUK
  3. 3.Institute of Mathematics and PhysicsAberystwyth UniversityAberystwythUK
  4. 4.Key Laboratory for Material MicrostructuresShanghai UniversityShanghaiChina
  5. 5.Department of PhysicsImperial CollegeLondonUK
  6. 6.Culham Centre for Fusion EnergyOxfordshireUK
  7. 7.Department of MaterialsUniversity of OxfordOxfordUK
  8. 8.Materials Science DivisionArgonne National LaboratoryArgonneUSA
  9. 9.Institute of Mathematics and PhysicsAberystwyth UniversityAberystwythUK
  10. 10.State Key Laboratory for Mesoscopic Physics and Department of PhysicsPekingChina

Personalised recommendations