Skip to main content

An Introduction to Physiological Player Metrics for Evaluating Games

Abstract

Evaluating affective user experience in games is an important component of the growing field of game user research, because compelling gameplay experiences incorporate meaningful and, therefore, emotional player decisions. This makes evaluating player emotions and player visceral physiological reactions a fascinating field of study for game researchers. With their recent success in the human factors domain, physiological metrics, which complement game metrics, have been successfully used to study player engagement and emotion in research and industry. This chapter provides a brief introduction to and primer of physiological measures currently used in game research and discusses the benefits and challenges of this quantitative method of game user research.

Keywords

  • Death Event
  • Skin Conductance Level
  • Body Response
  • Player Experience
  • Psychophysiological Measure

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4471-4769-5_26
  • Chapter length: 35 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-1-4471-4769-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Hardcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 26.1
Fig. 26.2
Fig. 26.3
Fig. 26.4
Fig. 26.5
Fig. 26.6
Fig. 26.7
Fig. 26.8
Fig. 26.9

Notes

  1. 1.

    A stimulus in psychological research is something (could be an event or an object) that evokes a body or mind response.

  2. 2.

    50/60 Hz is the electrical energy frequency that can come from lights, power supplies and other devices in your experiment environment.

  3. 3.

    Another way of analysing EEG is through Event-Related Potentials or Mu Rhythm, which I do not cover in this chapter.

  4. 4.

    http://hcigames.businessandit.uoit.ca

  5. 5.

    For example, participants in an experiment cannot chew gum, laugh, or talk during facial EMG, because this will introduce large artifacts in your EMG data.

  6. 6.

    The usual processing procedure is signal smoothing (often at half of the recording frequency, for example 0.5 s at 2 kHz recordings), baseline subtraction, and sometimes a logarithmic normalization. Depending on the system, an additional bandpass filter (high: 10Hz, low: 400Hz) or a Butterworth lowpass filter of 500Hz are necessary.

Additional Reading for Psychophysiology

  • 1. Andreassi, J. L. (2000). Human behavior and physiological response. Psychophysiology 4, 1–12.

    Google Scholar 

  • 2. Hazlett, R. L., & Benedek, J. (2007). Measuring emotional valence to understand the user’s experience of software. International Journal of Human-Computer Studies 65(4), 306–314. doi:10.1016/j.ijhcs.2006.11.005

  • 3. Baumgartner, T., Valko, L., Esslen, M., & Jäncke, L. (2006). Neural correlate of spatial presence in an arousing and noninteractive virtual reality: An EEG and psychophysiology study. CyberPsychology & Behavior 9(1), 30–45. doi:10.1089/cpb.2006.9.30

  • 4. Hudlicka, E. (2003). To feel or not to feel: The role of affect in human–computer interaction. International Journal of Human-Computer Studies 59(1–2), 1–32. doi:10.1016/s1071-5819(03)00047-8

  • 5. Hoffman, J. E. (1998). Visual attention and eye movements. In H.E. Pashler (Ed.) Attention. New York: Psychology Press (Taylor & Francis).

    Google Scholar 

  • 6. Fried, R. (1982). On-line analysis of the GSR. Integrative Physiological and Behavioral Science 17(2), 89–94. doi:10.1007/bf03002004

References

  • Andreassi, J. L. (2006). Psychophysiology: Human behavior and physiological response. London: Routledge.

    Google Scholar 

  • Barrett, L. F. (2006). Are emotions natural kinds? Perspectives on Psychological Science, 1(1), 28–58. doi:10.1111/j.1745-6916.2006.00003.x.

    CrossRef  Google Scholar 

  • Barrett, L. F., Mesquita, B., Ochsner, K. N., & Gross, J. J. (2007). The experience of emotion. Annual Review of Psychology, 58(1), 373–403. doi:10.1146/annurev.psych.58.110405.085709.

    CrossRef  Google Scholar 

  • Boucsein, W. (1992). Electrodermal activity. New York: Plenum Press.

    CrossRef  Google Scholar 

  • Bradley, M. M., & Lang, P. J. (2007). Emotion and motivation. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology (3rd ed., pp. 581–607). New York: Cambridge University Press.

    CrossRef  Google Scholar 

  • Bradley, M. M., Codispoti, M., Cuthbert, B. N., & Lang, P. J. (2001). Emotion and motivation I: Defensive and appetitive reactions in picture processing. Emotion, 1(3), 276–298.

    CrossRef  Google Scholar 

  • Brathwaite, B., & Schreiber, I. (2008). Challenges for game designers. Boston: Charles River Media.

    Google Scholar 

  • Brave, S., & Nass, C. (2002). Emotion in human-computer interaction. In J. A. Jacko & A. Sears (Eds.), The human-computer interaction handbook: Fundamentals, evolving technologies and emerging applications (pp. 81–96). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Cacioppo, J. T., Gardner, W. L., & Berntson, G. G. (1999). The affect system has parallel and integrative processing components: Form follows function. Journal of Personality and Social Psychology, 76(5), 839–855. doi:10.1037/0022-3514.76.5.839.

    CrossRef  Google Scholar 

  • Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (Eds.). (2007). Handbook of Psychophysiology. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Calvo, R. A., & D’Mello, S. (2010). Affect detection: An interdisciplinary review of models, methods, and their applications. IEEE Transactions on Affective Computing, 1(1), 18–37. doi:10.1109/t-affc.2010.1.

    CrossRef  Google Scholar 

  • Cannon, W. B. (1927). The James-Lange theory of emotions: A critical examination and an alternative theory. The American Journal of Psychology, 39(1/4), 106–124. doi:10.2307/1415404.

    CrossRef  Google Scholar 

  • Chatrian, G. E., Lettich, E., & Nelson, P. L. (1988). Modified nomenclature for the “10%” electrode system. Journal of Clinical Neurophysiology: Official Publication of the American Electroencephalographic Society, 5(2), 183–186.

    CrossRef  Google Scholar 

  • Dalgleish, T., Power, M. J., & Power, M. (2000). Handbook of cognition and emotion. Chichester/New York: Wiley.

    Google Scholar 

  • Dalgleish, T., Dunn, B. D., & Mobbs, D. (2009). Affective neuroscience: Past, present, and future. Emotion Review, 1(4), 355–368. doi:10.1177/1754073909338307.

    CrossRef  Google Scholar 

  • Damasio, A. R. (1994). Descartes’ error. New York: G.P. Putnam.

    Google Scholar 

  • Darrow, C. W. (1964). Psychophysiology, yesterday, today, and tomorrow. Psychophysiology, 1(1), 4–7. doi:10.1111/j.1469-8986.1964.tb02615.x.

    CrossRef  Google Scholar 

  • Davidson, R. J., Scherer, K. R., & Goldsmith, H. H. (2003). Handbook of affective sciences. Oxford: Oxford University Press.

    Google Scholar 

  • Döveling, K., Von Scheve, C., & Konijn, E. A. (2010). The Routledge handbook of emotions and mass media. London: Routledge.

    Google Scholar 

  • Duchowski, A. T. (2007). Eye tracking methodology: Theory and practice (2nd ed.). New York: Springer.

    Google Scholar 

  • Ekman, P. (1972). Universals and cultural differences in facial expressions of emotion. In J. Cole (Ed.), Nebraska symposium on motivation, 1971 (pp. 207–283). Lincoln: University of Nebraska Press.

    Google Scholar 

  • Ekman, P. (1992a). Are there basic emotions? Psychological Review, 99(3), 550–553.

    CrossRef  Google Scholar 

  • Ekman, P. (1992b). An argument for basic emotions. Cognition and Emotion, 6(3/4), 169–200. doi:10.1080/02699939208411068.

    Google Scholar 

  • Ekman, P., & Davidson, R. J. (1994). The nature of emotion: Fundamental questions. New York: Oxford University Press.

    Google Scholar 

  • Engl, S., & Nacke, L. E. (2013, February). Contextual influences on mobile player experience – A game user experience model. Entertainment Computing 4(1), 83–91, ISSN 1875-9521. doi:10.1016/j.entcom.2012.06.001.

    Google Scholar 

  • Fairclough, S. H. (2011a). Biometrics and evaluation of gaming experience part two: A thought experiment. http://www.physiologicalcomputing.net/?p=1760. Last accessed 19 Mar 2013.

  • Fairclough, S. H. (2011b). Biometrics, game evaluation, and user XP: Approach with caution. http://www.physiologicalcomputing.net/?p=1698. Last accessed 19 Mar 2013.

  • Fridlund, A. J., & Cacioppo, J. T. (1986). Guidelines for human electromyographic research. Psychophysiology, 23(5), 567–589. doi:10.1111/j.1469-8986.1986.tb00676.x.

    CrossRef  Google Scholar 

  • Frijda, N. H. (1986). The emotions. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Gokcay, D., & Yildirim, G. (2010). Affective computing and interaction: Psychological, cognitive, and neuroscientific perspectives. Hershey: IGI Global.

    CrossRef  Google Scholar 

  • Gualeni, S., Janssen, D., & Calvi, L. (2012). How psychophysiology can aid the design process of casual games: A tale of stress, facial muscles, and paper beasts. In Proceedings of the international conference on the Foundations of Digital Games (FDG ’12) (pp. 149–155). Raleigh: ACM. doi:10.1145/2282338.2282369.

  • Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In P. A. Hancock & N. Meshkati (Eds.), Human mental workload (pp. 239–250). Amsterdam: North Holland Press.

    Google Scholar 

  • Hazlett, R. L. (2006). Measuring emotional valence during interactive experiences: Boys at video game play. In Proceedings of the SIGCHI conference on Human Factors in Computing Systems (CHI ’06) (pp. 1023–1026). Montréal: ACM. doi:10.1145/1124772.1124925.

    Google Scholar 

  • Hazlett, R. L. (2008). Using biometric measurement to help develop emotionally compelling games. In K. Isbister & N. Schaffer (Eds.), Game usability: Advancing the player experience (pp. 187–205). Burlington: Morgan Kaufmann.

    Google Scholar 

  • Hugdahl, K. (1995). Psychophysiology: The mind-body perspective. Cambridge: Harvard University Press.

    Google Scholar 

  • Izard, C. E. (1972). Patterns of emotions: A new analysis of anxiety and depression. New York: Academic.

    Google Scholar 

  • James, W. (1884). What is an emotion? Mind, 9(34), 188–205.

    CrossRef  Google Scholar 

  • Jasper, H. H. (1958). Report of the committee on methods of clinical examination in electroencephalography. Electroencephalography and Clinical Neurophysiology, 10, 370–375.

    CrossRef  Google Scholar 

  • Kivikangas, J. M., Chanel, G., Cowley, B., Ekman, I., Salminen, M., Järvelä, S., & Ravaja, N. (2011a). A review of the use of psychophysiological methods in game research. Journal of Gaming & Virtual Worlds, 3(3), 181–199. doi:10.1386/jgvw.3.3.181_1

    Google Scholar 

  • Kivikangas, J. M., Nacke, L., & Ravaja, N. (2011b). Developing a triangulation system for digital game events, observational video, and psychophysiological data to study emotional responses to a virtual character. Entertainment Computing, 2(1), 11–16. doi:10.1016/j.entcom.2011.03.006.

    CrossRef  Google Scholar 

  • Kleinginna, P. R., & Kleinginna, A. M. (1981). A categorized list of emotion definitions, with suggestions for a consensual definition. Motivation and Emotion, 5(4), 345–379.

    CrossRef  Google Scholar 

  • Lacey, J. I. (1959). Psychophysiological approaches to the evaluation of psychotherapeutic process and outcome. In E. A. Rubinstein & M. B. Parloff (Eds.), Research in psychotherapy (pp. 160–208). Washington, DC: American Psychological Association. doi:10.1037/10036-010.

    CrossRef  Google Scholar 

  • Lane, R. D., & Nadel, L. (2002). Cognitive neuroscience of emotion. New York: Oxford University Press.

    Google Scholar 

  • Lang, P. J. (1995). The emotion probe. Studies of motivation and attention. American Psychologist, 50, 372–385.

    CrossRef  Google Scholar 

  • Lange, C. G. (1912). The mechanism of the emotions. In B. Rand (Ed.), The classical psychologists (pp. 672–684). Boston: Houghton Mifflin.

    Google Scholar 

  • Larsen, J. T., McGraw, A. P., & Cacioppo, J. T. (2001). Can people feel happy and sad at the same time? Journal of Personality and Social Psychology, 81(4), 684–696. doi:10.1037/0022-3514.81.4.684.

    CrossRef  Google Scholar 

  • Lazarus, R. S. (1968). Emotions and adaptation: Conceptual and empirical relations. In Nebraska symposium on motivation. Lincoln: University of Nebraska Press.

    Google Scholar 

  • LeDoux, J. (1998). The emotional brain. London: Orion Publishing Group.

    Google Scholar 

  • Lewis, M., Haviland-Jones, J. M., & Barrett, L. F. (2010). Handbook of emotions (3rd ed.). New York: Guilford Press.

    Google Scholar 

  • Lykken, D. T., & Venables, P. H. (1971). Direct measurement of skin conductance: A proposal for standardization. Psychophysiology, 8(5), 656–672. doi:10.1111/j.1469-8986.1971.tb00501.x.

    CrossRef  Google Scholar 

  • Mandryk, R. (2008). Physiological measures for game evaluation. In K. Isbister & N. Schaffer (Eds.), Game usability: Advice from the experts for advancing the player experience (pp. 207–235). Burlington: Morgan Kaufmann.

    Google Scholar 

  • Mandryk, R. L., & Atkins, M. S. (2007). A fuzzy physiological approach for continuously modeling emotion during interaction with play environments. International Journal of Human Computer Studies, 65(4), 329–347. doi:10.1016/j.ijhcs.2006.11.011.

    CrossRef  Google Scholar 

  • Mandryk, R. L., Inkpen, K. M., & Calvert, T. W. (2006). Using psychophysiological techniques to measure user experience with entertainment technologies. Behavior & Information Technology, 25(2), 141–158. doi:10.1080/01449290500331156.

    CrossRef  Google Scholar 

  • Mirza-Babaei, P. (2011). Understanding the contribution of biometrics to games user research. In Proceedings of “Think Design Play: The fifth international conference of the Digital Research Association” (DIGRA 2011), Hilversum. http://www.digra.org/dl/display_html?chid=11310.43254.pdf. Last accessed 19 Mar 2013.

  • Mirza-Babaei, P., Nacke, L. E., Fitzpatrick, G., White, G., McAllister, G., & Collins, N. (2012). Biometric storyboards: Visualising game user research data. In Proceedings of the 2012 ACM annual conference extended abstracts on Human Factors in Computing Systems Extended Abstracts (CHI EA ’12) (pp. 2315–2320). Austin: ACM. doi:10.1145/2223656.2223795.

    Google Scholar 

  • Mirza-Babaei, P., Nacke, L., Gregory, J., Collins, N., & Fitzpatrick, G. (2013). How does it play better? Exploring user testing and biometric storyboards in games user research. In Proceedings of the SIGCHI conference on Human Factors in Computing Systems (CHI 2013). To appear.

    Google Scholar 

  • Nacke, L. E. (2009). Affective ludology: Scientific measurement of user experience in interactive entertainment. Ph.D. thesis, Blekinge Institute of Technology, Karlskrona, Sweden.

    Google Scholar 

  • Nacke, L., & Lindley, C. A. (2008). Flow and immersion in first-person shooters: Measuring the player’s gameplay experience. In Proceedings of the 2008 conference on future play: Research, play, share (Future Play ’08) (pp. 81–88). Toronto: ACM. doi:10.1145/1496984.1496998.

  • Nacke, L., Lindley, C., & Stellmach, S. (2008) Log who’s playing: Psychophysiological game analysis made easy through event logging. In P. Markopoulos, Bd. Ruyter, W. IJsselsteijn, D. Rowland (Eds.), Proceedings of Fun and Games, Second International Conference, Eindhoven, The Netherlands, October 20–21, 2008 (Lecture Notes in Computer Science) (pp. 150–157). Dordrecht: Springer. doi:10.1007/978-3-540-88322-7_15

  • Nacke, L. E., Grimshaw, M. N., & Lindley, C. A. (2010). More than a feeling: Measurement of sonic user experience and psychophysiology in a first-person shooter game. Interacting with Computers, 22(5), 336–343. doi:10.1016/j.intcom.2010.04.005.

    CrossRef  Google Scholar 

  • Nacke, L. E., Kalyn, M., Lough, C., & Mandryk, R. L. (2011). Biofeedback game design: Using direct and indirect physiological control to enhance game interaction. In Proceedings of the SIGCHI conference on Human Factors in Computing Systems (CHI ’11) (pp. 103–112). Vancouver: ACM. doi:10.1145/1978942.1978958.

  • Nishimoto, S., Vu An, T., Naselaris, T., Benjamini, Y., Yu, B., & Gallant Jack, L. (2011). Reconstructing visual experiences from brain activity evoked by natural movies. Current Biology: CB, 21(19), 1641–1646.

    CrossRef  Google Scholar 

  • Panksepp, J. (2004). Affective neuroscience: The foundations of human and animal emotions. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Pelachaud, C. (2012). Emotion-oriented systems. Hoboken: Wiley.

    Google Scholar 

  • Picard, R. W. (1997). Affective computing. Cambridge, MA: MIT Press.

    Google Scholar 

  • Plutchik, R. (1980). A general psychoevolutionary theory of emotion. In R. Plutchik & H. Kellerman (Eds.), Emotion: Theory, research, and experience (Vol. 1, 3, pp. 3–31). New York: Academic.

    Google Scholar 

  • Plutchik, R. (1991). The emotions. Lanham: University Press of America.

    Google Scholar 

  • Prokasy, W. F., & Raskin, D. C. (1973). Electrodermal activity in psychological research. New York: Academic.

    Google Scholar 

  • Ravaja, N. (2004). Contributions of psychophysiology to media research: Review and recommendations. Media Psychology, 6(2), 193–235. doi:10.1207/s1532785xmep0602_4.

    CrossRef  Google Scholar 

  • Ravaja, N., Turpeinen, M., Saari, T., Puttonen, S., & Keltikangas-Järvinen, L. (2008). The psychophysiology of James Bond: Phasic emotional responses to violent video game events. Emotion, 8(1), 114–120. doi:10.1037/1528-3542.8.1.114.

    CrossRef  Google Scholar 

  • Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161–1178. doi:10.1037/h0077714.

    CrossRef  Google Scholar 

  • Russell, J. A. (2003). Core affect and the psychological construction of emotion. Psychological Review, 110(1), 145–172. doi:10.1037/0033-295x.110.1.145.

    CrossRef  Google Scholar 

  • Sander, D., & Scherer, K. R. (2009). The Oxford companion to emotion and the affective sciences. Oxford/New York: Oxford University Press.

    Google Scholar 

  • Schachter, S. (1964). The interaction of cognitive and physiological determinants of emotional state. In L. Berkowitz (Ed.), Advances in experimental social psychology (Vol. 1, pp. 49–80). New York: Academic.

    Google Scholar 

  • Schachter, S., & Singer, J. (1962). Cognitive, social, and physiological determinants of emotional state. Psychological Review, 69, 379–399.

    CrossRef  Google Scholar 

  • Scherer, K. R. (1984). Emotion as a multicomponent process: A model and some cross-cultural data. Review of Personality & Social Psychology, 5, 37–63.

    Google Scholar 

  • Scherer, K. R., Bänziger, T., & Roesch, E. B. (2010). Blueprint for affective computing: A sourcebook. Oxford/New York: Oxford University Press.

    Google Scholar 

  • Smith, M. E., Gevins, A., Brown, H., Karnik, A., & Du, R. (2001). Monitoring task loading with multivariate EEG measures during complex forms of human-computer interaction. Human Factors: The Journal of the Human Factors and Ergonomics Society, 43(3), 366–380. doi:10.1518/001872001775898287.

    CrossRef  Google Scholar 

  • Stemmler, G., Aue, T., & Wacker, J. (2007). Anger and fear: Separable effects of emotion and motivational direction on somatovisceral responses. International Journal of Psychophysiology, 66(2), 141–153. doi:10.1016/j.ijpsycho.2007.03.019.

    CrossRef  Google Scholar 

  • Stern, R. M., Ray, W. J., & Quigley, K. S. (2001). Psychophysiological recording (2nd ed.). New York: Oxford University Press.

    Google Scholar 

  • Tassinary, L. G., Cacioppo, J. T., & Vanman, E. J. (2000). The skeletomotor system: Surface electromyography. Handbook of Psychophysiology, 2, 274–278.

    Google Scholar 

  • Waterink, W., & van Boxtel, A. (1994). Facial and jaw-elevator EMG activity in relation to changes in performance level during a sustained information processing task. Biological Psychology, 37(3), 183–198. doi:10.1016/0301-0511(94)90001-9.

    CrossRef  Google Scholar 

  • Watson, D., Wiese, D., Vaidya, J., & Tellegen, A. (1999). The two general activation systems of affect: Structural findings, evolutionary considerations, and psychobiological evidence. Journal of Personality and Social Psychology, 76(5), 820–838.

    CrossRef  Google Scholar 

  • Yannakakis, G. N., & Hallam, J. (2008). Entertainment modeling through physiology in physical play. International Journal of Human Computer Studies, 66(10), 741–755. doi:10.1016/j.ijhcs.2008.06.004.

    CrossRef  Google Scholar 

  • Yannakakis, G. N., Hallam, J., & Lund, H. H. (2008). Entertainment capture through heart rate activity in physical interactive playgrounds. User Modeling and User-Adapted Interaction, 18(1), 207–243.

    CrossRef  Google Scholar 

Download references

Acknowledgements

Thanks to Pejman Mirza-Babaei for his initial feedback and Anders Drachen for his encouragement and feedback on this chapter. This research was supported by the Network of Centres of Excellence (NCE), Graphics, Animation and New Media (GRAND), NSERC, and SSHRC IMMERSe (895-2011-1014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lennart E. Nacke .

Editor information

Editors and Affiliations

Additional information

About the Author

Dr. Lennart E. Nacke is an Assistant Professor for Human-Computer Interaction and Game Science in the Faculty of Business and Information Technology at the University of Ontario Institute of Technology (UOIT) in Canada and currently also a visiting lecturer at the Department of Informatics at the University of Sussex. He is working on projects that deal with the cognitive and emotional side of playing games. His goal is to describe, analyse and have computers and machines react to the thoughts and feelings you have when you are fully engaged in playing a video game. With this research we can start understanding the effects of video games (positive and negative). Using body sensor technology, for example, sensors for brainwaves, heart rate, or muscle tension, Dr. Nacke taps into some of video gaming’s most motivating features to improve our physical fitness and mental wellbeing. His research is funded nationally and internationally and his publications have won best paper honourable mention (awarded to the top 5%) and best paper awards (awarded to the top 1%) at the premier human-computer interaction conferences CHI 2011 and CSCW 2012. He also writes a blog at www.acagamic.com and you can find out more about his research group at http://hcigames.businessandit.uoit.ca

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Nacke, L.E. (2013). An Introduction to Physiological Player Metrics for Evaluating Games. In: Seif El-Nasr, M., Drachen, A., Canossa, A. (eds) Game Analytics. Springer, London. https://doi.org/10.1007/978-1-4471-4769-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4769-5_26

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4768-8

  • Online ISBN: 978-1-4471-4769-5

  • eBook Packages: Computer ScienceComputer Science (R0)