Skip to main content

Design of Compact Heat Exchangers for Transfer Intensification

  • Chapter
  • First Online:

Abstract

Beginning with the concept of micro heat exchangers and its advantages and disadvantages, we illustrate the notion of heat transfer intensification by several innovative designs of mini-scale heat exchangers proposed during our research work. Distinct from other approaches, we do not seek extra fine channel size. On the contrary, we work on how to effectively manage the hydrodynamic aspects and the geometric organization of heat transfer surface to intensify heat transfer with acceptable increase of total pressure drop, for example, using internal (chaotic) mixing, multi-passage configuration and multi-scale geometries. Other influencing factors such as materials, flow maldistribution and fabricating techniques are also discussed for a global consideration of efficient and compact heat exchanger designs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The dynamic response of a heat exchanger is bimodal, with a rapid response mode that is highlighted here, and a slow response mode governed by the thermal inertia. For the exchangers studied, the relative thermal inertia (ratio of heat capacity of the metal and that of liquid in the channels) is important. So there will be a slow temperature drift after the quick response.

  2. 2.

    The overall heat transfer coefficient for solar receiver is calculated as

    $$ h = \frac{E}{T_{out}- T_{in}} \;{\rm ln} \;\frac{T_{h}- T_{in}}{{T_{h}- T_{out}}}$$
    (4.3)

    Where, E stands for the heat flux received by the solar receiver, Th, Tin and Tout the average temperature of the heating surface, air temperature at inlet and at outlet, respectively.

  3. 3.

    The general exergy loss (irreversibility) for a two-fluid flow heat exchanger is expressed as the difference of the fluid exergy between the inlet and the outlet:

    $$ Ex_{loss} = \dot{m}_{cold} (h_{cold,in} - h_{cold,out} ) + \dot{m}_{hot} (h_{hot,in} - h_{hot,out} ) + T_{0} [\dot{m}_{cold} (s_{cold,out} - s{}_{cold,in}) + \dot{m}_{hot} (s_{hot,out} - s{}_{hot,in})] $$

    where T0 is the environment absolute temperature.

References

  • Bejan A (2000) Shape and structure, from engineering to nature. Cambridge University Press, UK

    MATH  Google Scholar 

  • Bejan A (2002) Dendritic constructal heat exchanger with small-scale cross flows and larger-scales counterflows. Int J Heat Mass Trans 45:4607–4620

    Article  MATH  Google Scholar 

  • Bejan A, Lorente S (2008) Design with constructal theory, 1st edn. Wiley, Hoboken

    Book  Google Scholar 

  • Bergles AE (1997) Heat transfer enhancement-the encouragement and accommodation of high heat fluxes. J Heat Trans 119:8–19

    Article  Google Scholar 

  • Bergles AE (1999) Enhanced heat transfer: endless frontier, or mature and routine? Enhanced Heat Trans 6:79–88

    Google Scholar 

  • Bergles AE (2002) ExHFT for fourth generation heat transfer technology. Exp Therm Fluid Sci 26:335–344

    Article  Google Scholar 

  • Bergles AE, Jensen MK, Shome B (1996) The literature on enhancement of convective heat and mass transfer. Enhanced Heat Trans 4:1–6

    Google Scholar 

  • Bier W, Keller W, Linder G, Seidel D, Schubert K (1990) Manufacturing and testing of compact micro heat-exchanger with high volumetric heat transfer coefficients. Microstruct Sens Actuators DSC 19:189–197

    Google Scholar 

  • Bier W, Keller W, Linder G, Seidel D, Schubert K, Martin H (1993) Gas to gas heat transfer in micro heat exchangers. Chem Eng Process 32:33–43

    Article  Google Scholar 

  • Chagny C, Castelain C, Peerhossaini H (2000) Chaotic heat transfer for heat exchanger design and comparison with a regular regime for a large range of Reynolds numbers. App Therm Eng 20:1615–1648

    Article  Google Scholar 

  • Chiou JP (1978) Thermal performance deterioration in cross flow heat exchanger due to flow nonuniformity. ASME J Heat Trans 100:580–587

    Article  Google Scholar 

  • Chiou JP (1980) The advancement of compact heat exchanger theory considering the effects of longitudinal heat conduction and flow nonuniformity effects. In: Shah RK, McDonald CF, Howards CP (eds) Compact heat exchangers-mechanical engineering-history, technological advancement and mechanical design problems. ASME, New York, pp 101–121

    Google Scholar 

  • Da Silva AK, Lorente S, Bejan A (2004) Constructal multi-scale tree-shaped heat exchangers. J App Phys 96:1709–1718

    Article  Google Scholar 

  • Daniels BJ, Liburdy JA, Pence DV (2011) Experimental studies of adiabatic flow boiling in fractal-like branching micro channels. Exp Therm Fluid Sci 35:1–10

    Article  Google Scholar 

  • Fan Y, Luo L (2008) Recent applications of advances in microcanal heat exchangers and multi-scale design optimization. Heat Trans Eng 29:461–474

    Article  Google Scholar 

  • Fan Y, Luo L (2009) Second law analysis of a cross-flow heat exchanger equipped with constructal distributor/collector. Int J Exergy 6:778–792

    Article  Google Scholar 

  • Fan Y, Boichot R, Goldin T, Luo L (2008) Flow distribution property of the constructal distributor and heat transfer intensification in a mini heat exchanger. AICHE J 54:2796–2808

    Article  Google Scholar 

  • Fan JF, Ding WK, Zhang JF, He YL, Tao WQ (2009) A performance evaluation plot of enhanced heat transfer techniques oriented for energy-saving. Int J Heat Mass Trans 52:33–34

    Article  MATH  Google Scholar 

  • Guo ZY, Li ZX (2003) Size effect on microscale single-phase flow and heat transfer. Int J Heat Mass Trans 46:149–159

    Article  Google Scholar 

  • Gruss JA, Bouzon C, Thonon B (2005) Extruded microchannel-structured heat exchangers. Heat Trans Eng 26:56–63

    Article  Google Scholar 

  • Guichardon P, Falk L, Villermaux J (2000) Characterisation of micromixing efficiency by the iodide-iodate reaction system. part II: kinetic study. Chem Eng Sci 55:4245–4253

    Article  Google Scholar 

  • Harris C, Despa M, Kelly K (2000) Design and fabrication of a cross-flow micro heat exchanger. J Microelectromech Sys IEEE 9:502–508

    Article  Google Scholar 

  • Hetsroni G, Mosyak A, Pogrebnyak E, Yarin LP (2005) Fluid flow in micro-channels. Int J Heat Mass Trans 48:1982–1998

    Article  Google Scholar 

  • Heymann D, Pence D, Narayanan V (2010) Optimization of fractal-like branching microchannel heat sinks for single-phase flows. Int J Therm Sci 49:1383–1393

    Article  Google Scholar 

  • Janicke MT, Kestenbaum H, Hagendorf U, Schüth F, Fichtner M, Schubert K (2000) The controlled oxidation of hydrogen from an explosive mixture of gases using a microstructured reactor/heat exchanger and Pt/Al2O3 catalyst. J Catal 191:282–293

    Article  Google Scholar 

  • Kakac S, Bergles AE, Mayinger F, Yuncu H (1999) Heat transfer enhancement of heat exchangers. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Kang SW, Chang YT, Chang GS (2002) The manufacture and test of (110) orientation silicon based micro heat exchanger. Tamkang J Sci Eng 5:129–136

    Google Scholar 

  • Khan MG, Fartaj A (2011) A review on microchannel heat exchangers and potential applications. Int J Energy Res 35:553–582

    Article  Google Scholar 

  • Kitoo JB, Robertson JM (1987) Maldistribution of flow and its effect on heat exchanger performance. Amer Soc Mech Eng, New York

    Google Scholar 

  • Li Q (2012) The optimization of fluid flow and heat transfer in high-temperature pressurized-air solar receivers. PhD thesis of Université de Perpignan via Domitia

    Google Scholar 

  • Li Q, Flamant G, Yuan X, Neveu P, Luo L (2011) Compact heat exchangers: A review and future applications for a new generation of high temperature solar receivers. Renew Sust Energ Rev 15:4855–4875

    Article  Google Scholar 

  • Luo L (2001) Intensification des transferts en milieux poreux. Mémoire d’Habilitation à Diriger des Recherches, INPL: Nancy, France, ISBN: 2-905267-36-4

    Google Scholar 

  • Luo L, Tondeur D (2005) Multiscale optimization of flow distribution by constructal approach. Chin Particuology 3:329–336

    Article  Google Scholar 

  • Luo L, D’Ortona U, Tondeur D (2000) Compact heat exchangers. Microreaction technology: industrial prospects 556–565, Springer

    Google Scholar 

  • Luo L, Hoareau B, D’Ortona U, Tondeur D, Le Gall H, Corbel S (2001) Design, fabrication and experimental study of new compact mini heat-exchangers. Microreaction Technologys, 68–69, Springer

    Google Scholar 

  • Luo L, Fan Y, Tondeur D (2007a) Heat exchanger: from micro to multi-scale design optimization. Int J Energy Res 31:1266–1274

    Article  Google Scholar 

  • Luo L, Fan Y, Zhang W, Yuan X, Midoux N (2007b) Integration of constructal distributors to a mini crossflow heat exchanger and their assembly configuration optimization. Chem Eng Sci 62:3605–3619

    Article  Google Scholar 

  • Luo L, Fan Z, Le Gall H, Zhou X, Yuan W (2008) Experimental study of constructal distributor for flow equidistribution in mini crossflow heat exchanger (MCHE). Chem Eng Process 47:229–236

    Article  Google Scholar 

  • Mandelbrot B (1982) The fractal geometry of nature, 2nd edn. WH. Freeman, San Francisco

    MATH  Google Scholar 

  • Manglik RM (2003) Heat transfer enhancement. In: Bejan A, Kraus AD (eds.) Heat Transfer Handbook. Wiley, New York

    Google Scholar 

  • Maranzana G, Perry I, Maillet D (2004) Mini- and micro-channels: influence of axial conduction in the walls. Int J Heat Mass Trans 47:3993–4004

    Article  MATH  Google Scholar 

  • Marques C, Kelly KW (2004) Fabrication and performance of a pin fin micro heat exchanger. J Heat Trans 126:434–444

    Article  Google Scholar 

  • Martin H (1981) Structures convectives d’écoulement- étude de leur effet sur l’amélioration des échanges thermiques. Société française des thermiciens, B1–B13

    Google Scholar 

  • Mokrani O, Bourouga B, Castelain C, Peerhossaini H (2009) Fluid flow and convective heat transfer in flat microchannels. Int J Heat Mass Trans 52:1337–1352

    Article  MATH  Google Scholar 

  • Morini GL (2004) Single-phase convective heat transfer in microchannels: a review of experimental results. Int J Therm Sci 43:631–651

    Article  Google Scholar 

  • Mougin P, Pons M, Villermaux J (1996) Catalytic reactions at an artificial fractal interface: simulation with the ‘Devil’s comb’. Chem Eng J Biochem Eng J 64:63–68

    Article  Google Scholar 

  • Mueller AC, Chiou JP (1988) Review of various types of flow maldistribution in heat exchangers. Heat Trans Eng 9:36–50

    Article  Google Scholar 

  • Newton I (1701) Scala graduum caloris. The philosophical transactions of the royal society of London, Vol. 22, pp. 824–829; translated from the latin in the philosophical transactions of the royal society of london, abridged, Vol. 4 (1694–1702), London, pp. 572–575 (1809)

    Google Scholar 

  • Pence D (2010) The simplicity of fractal-like flow networks for effective heat and mass transport. Exp Therm Fluid Sci 34:474–486

    Article  Google Scholar 

  • Rands C, Webb BW, Maynes D (2006) Characterization of transition to turbulence in microchannels. Int J Heat Mass Trans 49:2924–2930

    Article  Google Scholar 

  • Saber M, Commenge JM, Falk L (2010) Heat transfer characteristics in multi-scale flow networks with parallel channels. Chem Eng Process 49:732–739

    Article  Google Scholar 

  • Shah RK (1991) Compact heat exchanger technology and applications. In: Foumeny EA, Heggs PJ (eds) Heat Exchange Engineering, Volume 2: Compact Heat Exchangers: Techniques of Size Reduction, 1–23, Ellis Horwood Limited, London

    Google Scholar 

  • Sieder EM, Tate CE (1936) Heat transfer and pressure drop of liquids in tubes. Ind Eng Chem 28:1429–1435

    Article  Google Scholar 

  • Steinke ME, Kandlikar SG (2004) Single-phase heat transfer enhancement techniques in microchannel and minichannel flows. International Conference on Microchannels and Minichannels, pp. 141–148, New York

    Google Scholar 

  • Steinke ME, Kandlikar SG (2006) Single-phase liquid friction factors in microchannels. Int J Therm Sci 45:1073–1083

    Article  Google Scholar 

  • Thome JR (1990) Enhanced boiling heat transfer. Hemisphere, New York

    Google Scholar 

  • Thonon B, Mercier P (1996) Plate heat exchangers: ten years of research at GRETh: part 2. sizing and flow maldistribution. Revue Générale de Thermique 35:561–568

    Article  Google Scholar 

  • Van der Vyver H (2003) Heat transfer characteristics of a fractal heat exchanger. PhD Thesis, rand Afrikaans University, Johannesburg

    Google Scholar 

  • Villermaux J, Schweich D, Authelin JR (1987) Le«Peigne du Diable»un Modèle d’Interface Fractale Bidimensionnelle, CR Acad Sci. Paris 304, Series II 307–310

    Google Scholar 

  • Webb RL (1994) Principles of enhanced heat transfer. Wiley, New York

    Google Scholar 

  • Webb RL, Bergles AE (1983) Heat transfer enhancement: second generation technology. Mech Eng 115:60–67

    Google Scholar 

  • Whitham JM (1896) The effects of retarders in fire tubes of steam boilers. Street Railway J 12:374

    Google Scholar 

  • Wu HY, Cheng P (2003) Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios. Int J Heat Mass Trans 46:2519–2525

    Article  MathSciNet  Google Scholar 

  • Zimparov V (2002) Energy conservation through heat transfer enhancement techniques. Int J Energy Res 26:675–696

    Article  Google Scholar 

  • Zimparov VD, da Silva AK, Bejan A (2006) Constructal tree-shaped parallel flow heat exchangers. Int J Heat Mass Trans 49:4558–4566

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yilin Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Fan, Y., Luo, L., Flamant, G. (2013). Design of Compact Heat Exchangers for Transfer Intensification. In: Luo, L. (eds) Heat and Mass Transfer Intensification and Shape Optimization. Springer, London. https://doi.org/10.1007/978-1-4471-4742-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4742-8_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4741-1

  • Online ISBN: 978-1-4471-4742-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics