Flow Equipartition and Shape Optimization of Fluidic Channel Networks

Chapter

Abstract

Delivering and distributing precise and controlled flows of one or different fluids onto a given surface or into a given volume is a challenge for many unit operations of process engineering. The present chapter is about concepts and fundamentals to conceive, design, optimize and fabricate such devices (fluid distributing/collecting networks), through geometry and hydrodynamic considerations and optimization. Some fundamental questions on optimal shapes and flow distribution in simple systems will be raised. The basic architectures of channel intersecting networks and multi-scale, fractal-like channel networks will be briefly presented, building on analogies with living organisms (e.g. the lung or the vascular system). The theoretical basis of the optimization of such networks will be illustrated on simple examples. A few examples of elaborate designs for complex problems will be given, with the aim of process intensification.

Keywords

Combustion Entropy Manifold 

References

  1. Acrivos A, Babcock BD, Pigford RL (1959) Flow distributions in manifolds. Chem Eng Sci 10:112–124CrossRefGoogle Scholar
  2. Ajmera SK, Delattre C, Schmidt MA, Jensen KF (2002) Microfabricated differential reactor for heterogeneous gas phase catalyst testing. J Catalysis 209:401–412CrossRefGoogle Scholar
  3. Bajura RA (1971) A model for flow distribution in manifolds. J Eng Power Trans ASME 93:7–12CrossRefGoogle Scholar
  4. Bajura RA, Jones JEH (1976) Flow distribution manifolds. J Fluids Eng Trans ASME 98:654–666CrossRefGoogle Scholar
  5. Barber RW, Emerson DR (2008) Optimal design of microfluidic networks using biologically inspired principles. Microfluid Nanofluid 4:179–191CrossRefGoogle Scholar
  6. Bassiouny MK, Martin H (1984a) Flow distribution and pressure drop in plate heat exchangers. Part I U-type arrangement. Chem Eng Sci 39:693–700CrossRefGoogle Scholar
  7. Bassiouny MK, Martin H (1984b) Flow distribution and pressure drop in plate heat exchangers. Part II Z-type arrangement. Chem Eng Sci 39:701–704CrossRefGoogle Scholar
  8. Bejan A (1997) Constructal-theory network of conducting paths for cooling a heat generating volume. Int J Heat Mass Trans 40:799–811MATHCrossRefGoogle Scholar
  9. Bejan A (2000) Shape and structure, from engineering to nature. Cambridge University Press, CambridgeMATHGoogle Scholar
  10. Bejan A, Lorente S (2006) Constructal theory of generation of configuration in nature and engineering. J Appl Phys 100:041301CrossRefGoogle Scholar
  11. Bejan A, Lorente S (2008) Design with constructal theory. Wiley, HobokenCrossRefGoogle Scholar
  12. Bejan A, Tondeur D (1998) Equipartition, optimal allocation, and the constructal approach to predicting organization in nature. Rev Generale de Therm 37:165–180CrossRefGoogle Scholar
  13. Chen YP, Cheng P (2002) Heat transfer and pressure drop in fractal tree-like microchannel nets. Int J Heat Mass Transfer 45:2643–2648MathSciNetMATHCrossRefGoogle Scholar
  14. Chen YP, Zhang C, Shi M, Yang Y (2010) Thermal and hydrodynamic characteristics of constructal tree-shaped mini channel heat sink. AIChE J 56:2018–2029CrossRefGoogle Scholar
  15. Chiou JP (1982) The effect of non-uniform fluid flow distribution on the thermal performance of solar collectors. Sol Energy 29:487–502CrossRefGoogle Scholar
  16. Cho KH, Kim MH (2010) Fluid flow characteristics of vascularized channel networks. Chem Eng Sci 65:6270–6281CrossRefGoogle Scholar
  17. Cho KH, Lee J, Kim MH, Bejan A (2010) Vascular design of constructal structures with low flow resistance and non uniformity. Int J Therm Sci 49:2309–2318CrossRefGoogle Scholar
  18. Commenge JM, Falk L, Corriou JP, Matlosz M (2002) Optimal design for flow uniformity in microchannel reactors. AIChE J 48:345–358CrossRefGoogle Scholar
  19. Dunkle RV, Davey ET (1970) Flow distribution in solar absorber banks. In: Proceedings of the 1970 international solar energy society conference, Australia, Paper No. 4/35Google Scholar
  20. Dymond C, Kutscher C (1997) Development of a flow distribution and design model for transpired solar collectors. Sol Energy 60:291–300CrossRefGoogle Scholar
  21. Escher W, Michel B, Poulikakos D (2009) Efficiency of optimized bifurcating tree-like and parallel microchannel networks in the cooling of electronics. Int J Heat Mass Transfer 52:1421–1430MATHCrossRefGoogle Scholar
  22. Fan Y, Boichot R, Goldin T, Luo L (2008) Flow distribution property of the constructal distributor and heat transfer intensification in a mini heat exchanger. AIChE J 54:2796–2808CrossRefGoogle Scholar
  23. Fan Z, Zhou X, Luo L, Yuan W (2008) Experimental investigation of the flow distribution of a 2-dimensional constructal distributor. Exp Thermal Fluid Sci 33:77–83CrossRefGoogle Scholar
  24. Fan Z, Zhou X, Luo L, Yuan W (2010) Evaluation of the performance of a constructal mixer with the iodide–iodate reaction system. Chem Eng Process 49:628–632CrossRefGoogle Scholar
  25. Fu H, Watkins AP, Yianneskis M (1994) The effects of flow split ratio and flow-rate in manifolds. Int J Numer Methods Fluids 18:871–886CrossRefGoogle Scholar
  26. Gheorghiu S, Kjelstrup S, Pfeifer P, Coppens MO (2005) Is the lung an optimal gas exchanger? In: Losa G, Merlini D, Nonnenmacher T (eds) Fractals in biology and medicine, vol 4. Birkhaüser, BaselGoogle Scholar
  27. Ghodoossi L (2005) Thermal and hydrodynamic analysis of a fractal microchannel network. Energy Convers Manage 46:771–788CrossRefGoogle Scholar
  28. Hess WR (1914) Das Prinzip des kleinsten Kraftverbrauches im Dienste hämodynamischer Forschung. Archiv für Anatomie und Physiologie 1–62Google Scholar
  29. Hong FJ, Cheng P, Ge H, Joo GT (2007) Conjugate heat transfer in fractal-shaped microchannel network heat sink for integrated microelectronic cooling application. Int J Heat Mass Transfer 50:4986–4998MATHCrossRefGoogle Scholar
  30. Idelchik IE (1969) Mémento des pertes de charge. Translation from Russian, Edition Eyrolles, ParisGoogle Scholar
  31. Idelchik IE (1986) Handbook of hydraulic resistance, 2nd edn. Hemisphere, WashingtonGoogle Scholar
  32. Jones GF (1987) Consideration of the heat-removal factor for liquid-cooled flat-plate solar collectors. Sol Energy 38:455–458CrossRefGoogle Scholar
  33. Jones GF, Lior N (1994) Flow distribution in manifolded solar collector arrays. J Solar Energy 52:289–300CrossRefGoogle Scholar
  34. Kearney MM (1994) Fluid transfer system with uniform fluid distributor. US Patent 5,354,460Google Scholar
  35. Kearney MM (2000) Engineered fractals enhance process applications. Chem Eng Prog 96:61–68Google Scholar
  36. Kikas NP (1995) Laminar flow distribution in solar systems. Sol Energy 54:209–217CrossRefGoogle Scholar
  37. Lorente S, Wechsatol W, Bejan A (2002) Tree-shaped flow structures designed by minimizing path lengths. Int J of Heat and Mass Transfer 45:3299–3312MATHCrossRefGoogle Scholar
  38. Lorente S, Bejan A (2006) Heterogeneous porous as media as multiscale structures for maximum flow access. J Appl Phys 100:114909CrossRefGoogle Scholar
  39. Lu F, Luo YH, Yang SM (2008) Analytical and experimental investigation of flow distribution in manifolds for heat exchangers. J Hydrodynamics 20:179–185CrossRefGoogle Scholar
  40. Luo L, Tondeur D (2005a) Multiscale optimization of flow distribution by constructal approach. China Particuology 3:329–336CrossRefGoogle Scholar
  41. Luo L, Tondeur D (2005b) Optimal distribution of viscous dissipation in a multi-scale branched fluid distributor. Int J Therm Sci 44:1131–1141CrossRefGoogle Scholar
  42. Luo L, Fan Y, Zhang W, Yuan X, Midoux N (2007) Integration of constructal distributors to a mini crossflow heat exchanger and their assembly configuration optimization. Chem Eng Sci 62:3605–3619CrossRefGoogle Scholar
  43. Mauroy B, Filoche M, Andrade JS Jr, Sapoval B (2003) Interplay between geometry and flow distribution in an airway tree. Phys Rev Lett 90:1481011–1481014CrossRefGoogle Scholar
  44. Mauroy B, Filoche M, Weibel ER, Sapoval B (2004) An optimal bronchial tree may be dangerous. Nature 427:633–636CrossRefGoogle Scholar
  45. Murray CD (1926) The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proc Natl Acad Sci 12:207–214Google Scholar
  46. Pence D (2010) The simplicity of fractal-like flow networks for effective heat and mass transport. Exper Therm Fluid Sci 34:474–486CrossRefGoogle Scholar
  47. Rebrov EV, Ismagilov IZ, Ekatpure RP, de Croon M, Schouten JC (2007) Header design for flow equalization in microstructured reactors. AIChE J 53:28–38CrossRefGoogle Scholar
  48. Rebrov EV, Schouten JC, de Croon MHJM (2011) Single-phase fluid flow distribution and heat transfer in microstructured reactors. Chem Eng Sci 66:1374–1393CrossRefGoogle Scholar
  49. Saber M, Commenge JM, Falk L (2009) Rapid design of channel multi-scale networks with minimum flow maldistribution. Chem Eng Process: Process Intensification 48:723–733CrossRefGoogle Scholar
  50. Saber M, Commenge JM, Falk L (2010) Microreactor numbering-up in multi-scale networks for industrial-scale applications: impact of flow maldistribution on the reactor performances. Chem Eng Sci 65:372–379CrossRefGoogle Scholar
  51. Sciubba E (2010) Entropy generation minima in different configurations of the branching of a fluid-carrying pipe in laminar isothermal flow. Entropy 12:1855–1866CrossRefGoogle Scholar
  52. Sciubba E (2011) Entropy generation minimization as a design tool. Part 1: analysis of different configurations of branched and non-branched laminar isothermal flow through a circular pipe. Int J Thermodyn 14:11–20Google Scholar
  53. Sloane NJA, Plouffe S (1995) The encyclopedia of integer sequences. Academic, New YorkMATHGoogle Scholar
  54. Tesař V (2012) Bifurcating channels supplying “numbered-up” microreactors. Chem Eng Res Design 89:2507–2520Google Scholar
  55. Tondeur D, Kvaalen E (1987) Equipartition of entropy production. An optimality criterion for transfer and separation processes. Ind Eng Chem Res 26:50–56CrossRefGoogle Scholar
  56. Tondeur D (1990) Equipartition of entropy production: a design and optimization criterion in chemical engineering. Finite-Time thermodynamics and thermoeconomics. Taylor and Francis, New York, pp 175–208Google Scholar
  57. Tondeur D, Luo L (2004) Design and scaling laws of ramified fluid distributors by the constructal approach. Chem Eng Sci 59:1799–1813CrossRefGoogle Scholar
  58. Tondeur D, Fan Y, Luo L (2009) Constructal optimization of arborescent structures with flow singularities. Chem Eng Sci 64:3968–3982CrossRefGoogle Scholar
  59. Tondeur D, Fan Y, Luo L (2011a) Flow distribution and pressure drop in 2D meshed channel circuits. Chem Eng Sci 66:15–26CrossRefGoogle Scholar
  60. Tondeur D, Fan Y, Commenge JM, Luo L (2011b) Flow and pressure distribution in linear discrete “Ladder-type” fluidic circuits: an analytical approach. Chem Eng Sci 66:709–720CrossRefGoogle Scholar
  61. Tondeur D, Fan Y, Commenge JM, Luo L (2011c) Uniform flows in rectangular lattice networks. Chem Eng Sci 66:5301–5312CrossRefGoogle Scholar
  62. Wang J (2008) Pressure drop and flow distribution in parallel-channel configurations of fuel cells: U-type arrangement. Int J Hydrogen Energy 33:6339–6350CrossRefGoogle Scholar
  63. Wang J (2010) Pressure drop and flow distribution in parallel-channel configurations of fuel cells: Z-type arrangement. Int J of Hydrogen Energy 35:5498–5509CrossRefGoogle Scholar
  64. Wang KM, Lorente S, Bejan A (2006) Vascularization with two optimized channel sizes. J Phys D Appl Phys 39:3086–3096CrossRefGoogle Scholar
  65. Wang KM, Lorente S, Bejan A (2007) Vascularization with grids of channels: multiple scales, loop shapes and body shapes. J Phys D Appl Phys 40:4740–4749CrossRefGoogle Scholar
  66. Weibel ER (1997) Design of airways and blood vessels considered as branching trees. In: Crystal RG, West JB, Weibel ER, Barnes PJ (eds) The Lung: scientific foundations, vol 1, 2nd edn. Lippincott-Raven Publishers, Philadelphia, pp 1061–1071Google Scholar
  67. Yue J, Boichot R, Luo L, Gonthier Y, Chen G, Yuan Q (2010) Flow distribution and mass transfer in a parallel microchannel contactor integrated with constructal distributors. AIChE J 56:298–317Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.LRGP—CNRS, UPR 3349, ENSICUniversité de LorraineNancyFrance
  2. 2.Laboratoire de Thermocinétique de Nantes, UMR CNRS 6607Centre National de la Recherche Scientifique (CNRS)Nantes Cedex 03France

Personalised recommendations