Bondu, M. Boullé: A supervised approach for change detection in data streams. , The 2011 International Joint Conference on Neural Networks (IJCNN), pp. 519 – 526 (2011).
Google Scholar
Daniel Kifer, Shai Ben-David, Johannes Gehrke: Detecting Change in Data Streams. Proceedings of the 30th VLDB Conference,Toronto,Canada, pp. 180-191 (2004).
Google Scholar
Leszek Czerwonka: Changes in share prices as a response to earnings forecasts regarding future real profits. Alexandru Ioan Cuza University of Iasi, Vol. 56, pp. 81-90 (2009).
Google Scholar
Q. Siqing, W. Sijing: A homomorphic model for identifying abrupt abnormalities of landslide forerunners. Engineering Geology, Vol. 57, pp. 163–168 (2000).
CrossRef
Google Scholar
Wei Xiong, NaixueXiong, Laurence T. Yang, etc.: Network Traffic Anomaly Detection based on Catastrophe Theory. IEEE Globecom 2010 Workshop on Advances in Communications and Networks, pp. 2070-2074 (2010).
Google Scholar
Thomas Hilker , Michael A.Wulder , Nicholas C. Coops, etc. : A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sensing of Environment, Vol. 113, pp. 1613–1627 (2009).
Google Scholar
Ashraf M. Dewan , Yasushi Yamaguchi: Using remote sensing and GIS to detect and monitor land use and land cover change in Dhaka Metropolitan of Bangladesh during 1960– 2005. Environ Monit Assess, Vol. 150, pp. 237-249 (2009).
CrossRef
Google Scholar
Jin S. Deng, KeWang,Yang Hong,Jia G.Qi.: Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landscape and Urban Planning, Vol. 92, pp. 187-198 (2009).
CrossRef
Google Scholar
Asampbu Kitamoto: Spatio-Temporal Data Mining for Typhoon Image Collection.Journal of Intelligent Information Systems, Vol. 19(1), pp. 25-41 (2002).
Google Scholar
Tao Cheng, Jiaqiu Wang: Integrated Spatio-temporal Data Mining for Forest Fire Prediction. Transactions in GIS. Vol. 12 (5), pp. 591-611 (2008).
Google Scholar
A. Dries and U. Ruckert: Adaptive Concept Drift Detection. In SIAM Conference on Data Mining, pp. 233–244 (2009).
Google Scholar
J.H. Friedman and L.C Rafsky: Multivariate generalizations of the Wald-Wolfowitz and Smirnov two-sample tests. Annals of Statistic, Vol. 4, pp. 697–717 (2006).
Google Scholar
F. Nemec, O. Santolik, M. Parrot,and J. J. Berthelier: Spacecraft observations of electromagnetic perturbations connected with seismic activity. Geophysical Research Letters, Vol. 35(L05109), pp. 1-5 (2008).
Google Scholar
Sheskin, D. J.: Handbook of Parametric and Nonparametric Statistical Procedures. 2nd ed. CRC Press, Boca Raton, Fla. pp. 513-727 (2000).
Google Scholar
W.A. Shewhart: The Application of Statistics as an Aid in Maintaining Quality of a manufactured Product. Am.Statistician Assoc., Vol. 20, pp. 546-548 (1925).
CrossRef
Google Scholar
W.A. Shewhart: Economic Control of Quality of Manufactured Product. Am. Soc. for Quality Control, (1931).
Google Scholar
E.S. Page: On Problem in Which a Change in a Parameter Occurs at an Unknown Point. Biometrika, Vol. 44, pp. 248-252 (1957).
MATH
Google Scholar
M.A. Girshik and H. Rubin: A Bayes Approach to a Quality Control Model, Annal of Math. Statistics, Vol. 23(1), pp. 114-125 (1952).
CrossRef
Google Scholar
Ludmila I. Kuncheva: Change Detection in Streaming Multivariate Data Using Likelihood Detectors. IEEE Transactions on Knowledge and Data Engineering, Vol. 6(1), pp. 1-7 (2007).
Google Scholar
F. Chu, Y. Wang, and C. Zaniolo: An Adaptive Learning Approach for Noisy Data Streams.Proc. Fourth IEEE Int’l Conf.Data Mining, pp. 351-354 (2004).
Google Scholar
J.Z. Kolter and M.A. Maloof: Dynamic Weighted Majority: A New Ensemble Method for Tracking Concept Drift. Proc. Third IEEE Int’l Conf. Data Mining, pp. 123-130 (2003).
Google Scholar
H. Wang, W. Fan, P.S. Yu, and J. Han: Mining Concept-Drifting Data Streams Using Ensemble Classifiers. Proc. ACM SIGKDD, pp. 226-235 (2003).
Google Scholar
M. Scholz and R. Klinkenberg: Boosting Classifiers for Drifting Concepts.Intelligent Data Analysis, Vol. 11(1), pp. 3-28 (2007).
Google Scholar
R. Klinkenberg: Learning Drifting Concepts: Examples Selection vs Example Weighting, Intelligent Data Analysis. special issue on incremental learning systems capable of dealing with concept drift, Vol. 8(3), pp. 281-300 (2004).
Google Scholar
R. Klinkenberg and T. Joachims: Detecting Concept Drift with Support Vector Machines. Proc. 17th Int’l Conf. Machine Learning, P. Langley, ed., pp. 487-494 (2000).
Google Scholar
G. Widmer and M. Kubat: Learning in the Presence of Concept Drift and Hidden Contexts.Machine Learning, Vol. 23(1), pp. 69-101 (1996).
Google Scholar
Kong Fanlang: A Dynamic Method of System Forecast. Systems Engineering Theory and Practice, Vol. 19(3), pp. 58-62 (1999).
Google Scholar
Kong Fanlang: A Dynamic Method of Air Temperature Forecast. Kybernetes, Vol. 33(2), pp. 282-287 (2004).
Google Scholar
S. S. Ho, H. Wechsler: A Martingale Framework for Detecting Changes in Data Streams by Testing Exchangeability. IEEE transactions on pattern analysis and machine intelligence, Vol. 32(12), pp. 2113-2127 (2010).
CrossRef
Google Scholar
S. Muthukrishnan, E. van den Berg, and Y. Wu: Sequential Change Detection on Data Streams, Proc. ICDM Workshop Data Stream Mining and Management, pp. 551-556 (2007)
Google Scholar
V. Vovk, I. Nouretdinov, and A. Gammerman: Testing Exchangeability On-Line. Proc. 20th Int’l Conf. Machine Learning,T. pp. 768-775 (2003).
Google Scholar
M. Steele: Stochastic Calculus and Financial Applications. SpringerVerlag, (2001).
Google Scholar
E. Keogh, J. Lin, and A. Fu: HOT SAX: Efficiently finding the most unusual time series subsequences. In Proceedings of the 5th IEEE International Conference on Data Mining (ICDM'05), pp. 226-233 (2005).
Google Scholar
V. Moskvina and A. A. Zhigljavsky: An algorithm based on singular spectrum analysis for change-point detection. Communication in Statistics: Simulation & Computation, Vol. 32(2), pp. 319-352 (2003).
MathSciNet
MATH
CrossRef
Google Scholar
Y. Takeuchi and K. Yamanishi: A unifying framework for detecting outliers and change points from non-stationary time series data. IEEE Transactions on Knowledge and Data Engineering, Vol. 18(4), pp. 482–489 (2006).
CrossRef
Google Scholar
F. Desobry, M. Davy, and C. Doncarli: An online kernel change detection algorithm. IEEE Transactions on Signal Processing, Vol. 53(8), pp. 2961-2974 (2005).
MathSciNet
CrossRef
Google Scholar