Optimal Control of Supply Chains in More General Situations

  • Dong-Ping SongEmail author
Part of the Advances in Industrial Control book series (AIC)


This chapter considers the optimal control problem for supply chains in more general situations by relaxing some assumptions made in  Chap. 2. The extension is done in four directions, that is, (1) changeable order size once issued, (2) number of outstanding orders, (3) lead-time probability distribution, and (4) number of entities in the supply chain. We will provide mathematical formulations for these generalized supply chains and use numerical examples to illustrate the main structural properties of the optimal policy such as monotonicity and asymptotic behaviors. For the multistage serial supply chain systems, it is shown that the optimal policies can be characterized by a set of monotonic switching manifolds when the maximum order size is of one unit. Finally, we discuss a few relevant issues and note the literature related to optimal control of stochastic production/inventory systems in various contexts, including deterministic lead times and random demands, stochastic lead times and outstanding order, multiple replenishment channels and order information, and ordering capacity and storage capacity.


Supply Chain Lead Time Production Policy Order Size Erlang Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alfredsson, P., Verrijdt, J.: Modeling emergency supply flexibility in a two-echelon inventory system. Manage. Sci. 45(10), 1416–1431 (1999)zbMATHCrossRefGoogle Scholar
  2. Aviv, Y., Federgruen, A.: Stochastic inventory models with limited production capacity and periodically varying parameters. Probab. Eng. Inf. Sci. 11(1), 107–135 (1997)zbMATHCrossRefGoogle Scholar
  3. Berman, O., Kim, E.: Dynamic order replenishment policy in internet-based supply chains. Math. Method Oper. Res. 53, 371–390 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  4. Berman, O., Kim, E.: Dynamic inventory strategies for profit maximization in a service facility with stochastic service, demand and lead time. Math. Method Oper. Res. 60, 497–521 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  5. Bertsekas, D.P.: Dynamic Programming: Deterministic and Stochastic Models. Prentice-Hall, Englewood Cliffs (1987)zbMATHGoogle Scholar
  6. Bradley, J.R., Robinson, L.W.: Improved base-stock approximations for independent stochastic lead times with order crossover. Manuf. Serv. Oper. Manage. 7(4), 319–329 (2005)CrossRefGoogle Scholar
  7. Bylka, S.: Turnpike policies for periodic review inventory model with emergency orders. Int. J. Prod. Econ. 93–94(8), 357–373 (2005)CrossRefGoogle Scholar
  8. Chao, X., Zhou, S.X.: Optimal policy for a multiechelon inventory system with batch ordering and fixed replenishment intervals. Oper. Res. 57(2), 377–390 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  9. Chen, F.: Optimal policies for multi-echelon inventory problems with batch ordering. Oper. Res. 48, 376–389 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  10. Chen, F., Zheng, Y.S.: Evaluating echelon stock (R, nQ) policies in serial production/inventory systems with stochastic demand. Manage. Sci. 40, 1262–1275 (1994)zbMATHCrossRefGoogle Scholar
  11. Chiang, C.: A note on optimal policies for a periodic inventory system with emergency orders. Comput. Oper. Res. 28, 93–103 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  12. Clark, A.J., Scarf, H.E.: Optimal policies for a multi-echelon inventory problem. Manage. Sci. 6, 475–490 (1960)CrossRefGoogle Scholar
  13. Ehrhardt, R.: (s, S) policies for a dynamic inventory model with stochastic lead times. Oper. Res. 32(1), 121–132 (1984)zbMATHCrossRefGoogle Scholar
  14. Federgruen, A., Zipkin, P.: Computational issues in an infinite-horizon, multiechelon inventory model. Oper. Res. 32(4), 818–836 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  15. Federgruen, A., Zipkin, P.: An inventory model with limited production capacity and uncertain demands I. The average-cost criterion. Math. Oper. Res. 11(2), 193–207 (1986a)MathSciNetzbMATHCrossRefGoogle Scholar
  16. Federgruen, A., Zipkin, P.: An inventory model with limited production capacity and uncertain demands II. The discounted-cost criterion. Math. Oper. Res. 11(2), 208–215 (1986b)MathSciNetzbMATHCrossRefGoogle Scholar
  17. Gaukler, G., Ozer, O., Hausman, W.H.: Order progress information: improved dynamic emergency ordering policies. Prod. Oper. Manage. 17(6), 599–613 (2008)CrossRefGoogle Scholar
  18. Glasserman, P., Yao, D.: Monotone Structure in Discrete-Event Systems. Wiley, New York (1994)zbMATHGoogle Scholar
  19. Gutierrez, J., Sedeno-Noda, A., Colebrook, M., Sicilia, J.: A new characterization for the dynamic lot size problem with bounded inventory. Comput. Oper. Res. 30(3), 383–395 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  20. Gutierrez, J., Sedeno-Noda, A., Colebrook, M., Sicilia, J.: A polynomial algorithm for the production/ordering planning problem with limited storage. Comput. Oper. Res. 34(4), 934–937 (2007)zbMATHCrossRefGoogle Scholar
  21. Hadley, G., Whitin, T.M.: Analysis of Inventory Systems. Prentice-Hall, Englewood Cliffs (1963)zbMATHGoogle Scholar
  22. He, Q.M., Jewkes, E.M., Buzacott, J.: Optimal and near-optimal inventory control policies for a make-to-order inventory-production system. Eur. J. Oper. Res. 141, 113–132 (2002a)MathSciNetzbMATHCrossRefGoogle Scholar
  23. He, Q.M., Jewkes, E.M., Buzacott, J.: The value of information used in inventory control of a make-to-order inventory-production system. IIE Trans. 34, 999–1013 (2002b)Google Scholar
  24. Huh, W.T., Janakiraman, G., Nagarajan, M.: Capacitated serial inventory systems: sample path and stability properties under base-stock policies. Oper. Res. 58(4), 1017–1022 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  25. Janakiraman, G., Muckstadt, J.A.: A decomposition approach for a class of capacitated serial systems. Oper. Res. 57(6), 1384–1393 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  26. Kaplan, R.S.: A dynamic inventory model with stochastic lead times. Manage. Sci. 16(7), 491–507 (1970)zbMATHCrossRefGoogle Scholar
  27. Kapuscinski, R., Tayur, S.: A capacitated production-inventory model with periodic demand. Oper. Res. 46(6), 899–911 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  28. Kim, E.: Optimal inventory replenishment policy for a queueing system with finite waiting room capacity. Eur. J. Oper. Res. 161, 256–274 (2005)zbMATHCrossRefGoogle Scholar
  29. Lee, W., Wang, S.P.: Managing level of consigned inventory with buyer’s warehouse capacity constraint. Prod. Plan. Control 19(7), 677–685 (2008)MathSciNetCrossRefGoogle Scholar
  30. Liu, X., Tu, Y.: Production planning with limited inventory capacity and allowed stockout. Int. J. Prod. Econ. 111(1), 180–191 (2008)CrossRefGoogle Scholar
  31. Love, S.F.: Bounded production and inventory models with piecewise concave costs. Manage. Sci. 20(3), 313–318 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  32. Minner, S., Silver, E.A.: Replenishment policies for multiple products with compound-Poisson demand that share a common warehouse. Int. J. Prod. Econ. 108(1–2), 388–398 (2007)CrossRefGoogle Scholar
  33. Mohebbi, E.: A production-inventory model with randomly changing environmental conditions. Eur. J. Oper. Res. 174, 539–552 (2006)zbMATHCrossRefGoogle Scholar
  34. Mohebbi, E.: A note on a production control model for a facility with limited storage capacity in a random environment. Eur. J. Oper. Res. 190(2), 562–570 (2008)zbMATHCrossRefGoogle Scholar
  35. Moinzadeh, K., Aggarwal, P.: An information based multiechelon inventory system with emergency orders. Oper. Res. 45(5), 694–701 (1997)zbMATHCrossRefGoogle Scholar
  36. Moinzadeh, K., Nahmias, S.: A continuous review model for an inventory model with two supply modes. Manage. Sci. 34(6), 761–773 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  37. Moinzadeh, K., Schmidt, C.: An (S – 1, S) inventory system with emergency orders. Oper. Res. 39(2), 308–321 (1991)zbMATHCrossRefGoogle Scholar
  38. Muharremoglu, A., Tsitsiklis, J.N.: A single-unit decomposition approach to multiechelon inventory systems. Oper. Res. 56, 1089–1103 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  39. Muharremoglu, A., Yang, N.: Inventory management with an exogenous supply process. Oper. Res. 58, 111–129 (2010)zbMATHCrossRefGoogle Scholar
  40. Parker, R.P., Kapuscinski, R.: Optimal policies for a capacitated two-echelon inventory system. Oper. Res. 52(5), 739–755 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  41. Robinson, L.W., Bradley, J.R., Thomas, L.J.: Consequences of order crossover under order-up-to inventory policies. Manuf. Serv. Oper. Manage. 3(3), 175–188 (2001)CrossRefGoogle Scholar
  42. Rosling, K.: Optimal inventory policies for assembly systems under random demands. Oper. Res. 37, 565–579 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  43. Sheopuri, A., Janakiraman, G., Seshadri, S.: New policies for the stochastic inventory control problem with two supply sources. Oper. Res. 58(3), 734–745 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  44. Simchi-Levi, D., Zhao, Y.: Safety stock positioning in supply chains with stochastic lead times. Manuf. Serv. Oper. Manage. 7(4), 295–318 (2005)CrossRefGoogle Scholar
  45. Song, D.P.: Optimal integrated ordering and production policy in a supply chain with stochastic lead-time, processing-time and demand. IEEE Trans. Autom. Control 54(9), 2027–2041 (2009)CrossRefGoogle Scholar
  46. Song, D.P., Sun, Y.X.: Optimal service control of a serial production line with unreliable workstations and random demand. Automatica 34(9), 1047–1060 (1998)zbMATHCrossRefGoogle Scholar
  47. Song, J.S., Zipkin, P.: Inventory control with information about supply conditions. Manage. Sci. 42(10), 1409–1419 (1996)zbMATHCrossRefGoogle Scholar
  48. Song, J.S., Zipkin, P.: Inventories with multiple supply sources and networks of queues with overflow bypasses. Manage. Sci. 55(3), 362–372 (2009)zbMATHCrossRefGoogle Scholar
  49. Svoronos, A., Zipkin, P.: Evaluation of one-for-one replenishment policies for multiechelon inventory systems. Manage. Sci. 37(1), 68–83 (1991)CrossRefGoogle Scholar
  50. Tagaras, G., Vlachos, D.: A periodic review inventory system with emergency replenishments. Manage. Sci. 47(3), 415–429 (2001)zbMATHCrossRefGoogle Scholar
  51. Tayur, S.: Computing the optimal policy for capacitated inventory models. Commun. Stat. Stoch. Models 9(4), 585–598 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  52. Van Houtum, G.J., Scheller-Wolf, A., Yi, J.: Optimal control of serial inventory systems with fixed replenishment intervals. Oper. Res. 55, 674–687 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  53. Veatch, M., Wein, L.: Monotone control of queueing networks. Queueing Syst. 12, 391–408 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  54. Veatch, M., Wein, L.: Optimal-control of a 2-station tandem production inventory system. Oper. Res. 42(2), 337–350 (1994)zbMATHCrossRefGoogle Scholar
  55. Veeraraghavan, S., Scheller-Wolf, A.: Now or later: a simple policy for effective dual sourcing in capacitated systems. Oper. Res. 56(4), 850–864 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  56. Yang, J.: Production control in the face of storable raw material, random supply, and an outside market. Oper. Res. 52(2), 293–311 (2005)CrossRefGoogle Scholar
  57. Zipkin, P.: Stochastic lead times in continuous-time inventory models. Nav. Res. Logist. 33, 763–774 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  58. Zipkin, P.: Foundations of Inventory Management. McGraw-Hill, Boston (2000)Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.School of ManagementUniversity of PlymouthPlymouthUK

Personalised recommendations