Advertisement

Optimization of Threshold Control Parameters via Simulation-Based Methods

  • Dong-Ping SongEmail author
Chapter
Part of the Advances in Industrial Control book series (AIC)

Abstract

This chapter presents simulation-based methods to optimize threshold control parameters in stochastic supply chain systems. We first describe the key components of the discrete-event simulation, then provide a generic simulation model to evaluate the performance of a given threshold control policy in stochastic supply chain systems. Two simulation-based meta-heuristics, genetic algorithms and simulated annealing, are presented with the explanation of their key elements. These two meta-heuristics are then applied to the stochastic supply chain with assembly operations in  Chap. 6 and optimize the threshold control policies in  Chap. 11. To tackle the computational complexity of the search-based optimization methods in stochastic systems, the ordinal optimization technique is introduced. We present an ordinal optimization-based elite genetic algorithm to achieve the balance between the solution quality and the computational effort.

Keywords

Supply Chain Simulated Annealing Supply Chain System Offspring Population Sample Cost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahmed, M.A., Alkhamis, T.M.: Simulation-based optimization using simulated annealing with ranking and selection. Comput. Oper. Res. 29(4), 387–402 (2002)zbMATHCrossRefGoogle Scholar
  2. Alabas, C., Altiparmak, F., Dengiz, B.: A comparison of the performance of artificial intelligence techniques for optimizing the number of Kanbans. J. Oper. Res. Soc. 53, 907–914 (2002)zbMATHCrossRefGoogle Scholar
  3. Alfredsson, P., Verrijdt, J.: Modeling emergency supply flexibility in a two-echelon inventory system. Manag. Sci. 45(10), 1416–1431 (1999)zbMATHCrossRefGoogle Scholar
  4. Avsar, Z.M., Zijm, W.H., Rodoplu, U.: An approximate model for base-stock-controlled assembly systems. IIE Trans. 41(3), 260–274 (2009)CrossRefGoogle Scholar
  5. Aytug, H., Khouja, M., Vergara, F.E.: Use of genetic algorithms to solve production and operations management problems: a review. Int. J. Prod. Res. 41(17), 3955–4009 (2003)CrossRefGoogle Scholar
  6. Back, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford (1996)Google Scholar
  7. Banks, J., Carson, J.S., Nelson, B.L., Nicol, D.M.: Discrete Event Systems Simulation, 3rd edn. Prentice Hall, Englewood Cliffs (2000)Google Scholar
  8. De Kok, A.G., Visschers, J.W.C.H.: Analysis of assembly systems with service level constraints. Int. J. Prod. Econ. 59(1–3), 313–326 (1999)CrossRefGoogle Scholar
  9. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part-B 26, 29–41 (1996)CrossRefGoogle Scholar
  10. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43. Nagoya, Japan (1995)Google Scholar
  11. Fu, M.C.: Optimization for simulation: theory vs. practice. INFORMS J. Comput. 14(3), 192–215 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  12. Ghrayeb, O., Phojanamongkolkij, N., Tan, B.A.: A hybrid push/pull system in assemble-to-order manufacturing environment. J. Intell. Manuf. 20(4), 379–387 (2009)CrossRefGoogle Scholar
  13. Glover, F.: Tabu search – part I. ORSA J. Comput. 1(3), 190–206 (1989)zbMATHCrossRefGoogle Scholar
  14. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  15. Graves, S.C.: The multi-product production cycling problem. AIIE Trans. 12(3), 233–240 (1980)CrossRefGoogle Scholar
  16. Ho, Y.C.: An explanation of ordinal optimization: soft computing for hard problems. Inf. Sci. 113, 169–192 (1999)zbMATHCrossRefGoogle Scholar
  17. Ho, Y.C., Sreenivas, R., Vakili, P.: Ordinal optimization of DEDS. Discret. Event Dyn. Syst. Theory Appl. 2, 61–88 (1992)zbMATHCrossRefGoogle Scholar
  18. Ho, Y.C., Zhao, Q.C., Jia, Q.S.: Ordinal Optimization: Soft Optimization for Hard Problems. Springer, New York (2007)zbMATHGoogle Scholar
  19. Holland, J.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press, Ann Arbor (1975)Google Scholar
  20. Ip, W.H., Huang, M., Yung, K.L., Wang, D.W., Wang, X.W.: CONWIP based control of a lamp assembly production line. J. Intell. Manuf. 18(2), 261–271 (2007)CrossRefGoogle Scholar
  21. Ismail, C., Burak, E., Joseph, G.: A decision rule for coordination of inventory and transportation in a two-stage supply chain with alternative supply sources. Comput. Oper. Res. 38(12), 1696–1704 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  22. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–679 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  23. Koulouriotis, D.E., Xanthopoulos, A.S., Tourassis, V.D.: Simulation optimisation of pull control policies for serial manufacturing lines and assembly manufacturing systems using genetic algorithms. Int. J. Prod. Res. 48(10), 2887–2912 (2010)zbMATHCrossRefGoogle Scholar
  24. Luh, G.C., Chueh, C.H., Liu, W.W.: MOIA: multi-objective immune algorithm. Eng. Optim. 35(2), 143–164 (2003)MathSciNetCrossRefGoogle Scholar
  25. Luo, Y.C., Guignard, M., Chen, C.H.: A hybrid approach for integer programming combining genetic algorithms, linear programming and ordinal optimization. J. Intell. Manuf. 12(5–6), 509–519 (2001)CrossRefGoogle Scholar
  26. Matta, A., Dallery, Y., Di Mascolo, M.: Analysis of assembly systems controlled with Kanbans. Eur. J. Oper. Res. 166(2), 310–336 (2005)zbMATHCrossRefGoogle Scholar
  27. Moinzadeh, K., Nahmias, S.: A continuous review model for an inventory model with two supply modes. Manag. Sci. 34(6), 761–773 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  28. Ramakrishnan, R., Krishnamurthy, A.: Performance evaluation of a synchronization station with multiple inputs and population constraints. Comput. Oper. Res. 39(3), 560–570 (2012)CrossRefGoogle Scholar
  29. Rezga, N., Xie, X., Mati, Y.: Joint optimization of preventive maintenance and inventory control in a production line using simulation. Int. J. Prod. Res. 42(10), 2029–2046 (2004)CrossRefGoogle Scholar
  30. Shahabudeen, P., Gopinath, R., Krishnaiah, K.: Design of bi-criteria Kanban system using simulated annealing technique. Comput. Ind. Eng. 41(4), 355–370 (2002)CrossRefGoogle Scholar
  31. Song, D.P.: Stochastic models in planning complex engineer-to-order products. Ph.D. thesis, University of Newcastle upon Tyne (2001)Google Scholar
  32. Song, D.P., Hicks, C., Earl, C.F.: An ordinal optimization based evolution strategy to schedule complex make-to-order products. Int. J. Prod. Res. 44(22), 4877–4895 (2006)zbMATHCrossRefGoogle Scholar
  33. Terzi, S., Cavalieri, S.: Simulation in the supply chain context: a survey. Comput. Ind. 53(1), 3–16 (2004)CrossRefGoogle Scholar
  34. Thangam, A., Uthayakumar, R.: A two-level supply chain with partial backordering and approximated Poisson demand. Eur. J. Oper. Res. 187(1), 228–242 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  35. Veeraraghavan, S., Scheller-Wolf, A.: Now or later: a simple policy for effective dual sourcing in capacitated systems. Oper. Res. 56(4), 850–864 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  36. Wein, L.M.: Dynamic scheduling of a multiclass make-to-stock queue. Oper. Res. 40(4), 724–735 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  37. Yen, C.H., Wong, D.S.H., Jang, S.S.: Solution of trim-loss problem by an integrated simulated annealing and ordinal optimization approach. J. Intell. Manuf. 15(5), 701–709 (2004)CrossRefGoogle Scholar
  38. Yoo, T., Cho, H., Yucesan, E.: Hybrid algorithm for discrete event simulation based supply chain optimization. Expert Syst. Appl. 37(3), 2354–2361 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.School of ManagementUniversity of PlymouthPlymouthUK

Personalised recommendations