Advertisement

Management of Impaired Renal Function in the Newborn

  • Henry Morgan
  • Caroline Ann Jones
Chapter

Abstract

The neonatal kidney can adapt to the usual physiological processes occurring after birth and allow homeostatic regulation to transfer from the placenta to the kidney. However during this period of transition the neonatal kidney is vulnerable. It is less able to withstand stress such as hypotension, hypoxia or hypovolaemia which will result in a decrease in kidney function. It is therefore not unexpected that the incidence of acute renal failure in children is highest in the neonatal period, with an incidence similar to adult patients. This is more pronounced in the more immature infants. Improvements in perinatal and neonatal medicine have increased the survival chances of critically ill neonates. However mortality and morbidity rates remain significant for those newborns who have suffered from a kidney injury with a reported incidence of death in 25–50%.

Keywords

Renal function Newborn renal physiology Renal failure Peritoneal dialysis Outcomes 

References

  1. 1.
    Moghal NE, Brocklebamk JT, Meadow SR. A review of acute renal failure in children: incidence, etiology and outcome. Clin Nephrol. 1998;49(2):91–5.Google Scholar
  2. 2.
    Agras PI, Tarcan A, Baskin E, Cengiz N, Gurakan B, Saatci U. Acute renal failure in the neonatal period. Ren Fail. 2004;26(3):305–9.CrossRefGoogle Scholar
  3. 3.
    Korallkar R, Ambalavanan N, Levitan EB, McGwin G, Goldstein S, Askenaz D. Acute kidney injury reduces survival in very low birth weight infants. Pediatr Res. 2011;69(4):354–8.CrossRefGoogle Scholar
  4. 4.
    Solhaug MJ, Bolger PM, Jose P. The developing kidney and environmental toxins. Pediatrics. 2004;113:1084–91.Google Scholar
  5. 5.
    Aperia A, Broberger O, Thodenius K, Zetterstrõm R. Development of renal control of salt and fluid homeostasis during the first year of life. Acta Pediatr Scand. 1975;64:393–8.CrossRefGoogle Scholar
  6. 6.
    Cuzzolin L, Fanos V, Pinna B, di Mrzio M, Perin M, Tramontozzi P, Tonetto P, Cataldi L. Postnatal renal function in preterm newborns: a role of diseases, drugs and therapeutic interventions. Pediatr Nephrol. 2006;21:931–8.CrossRefGoogle Scholar
  7. 7.
    Matos P, Duarte-Silva M, Drukker A, Guignard JP. Creatinine reabsorption by the newborn rabbit kidney. Pediatr Res. 1998;44:639–41.CrossRefGoogle Scholar
  8. 8.
    Schwartz GJ, Feld LG, Langdorf DJ. A simple estimate of glomerular filtration rate in full-term infants during the first year of life. J Pediatr. 1984;104:849–54.CrossRefGoogle Scholar
  9. 9.
    Brion LP, Fleishchman AR, McCarron C, Schwarz GJ. A simple estimate of glomerular filtration rate in low birth weight infants during the first year of life: non-invasive assessments of body composition and growth. J Pediatr. 1986;109:698–707.CrossRefGoogle Scholar
  10. 10.
    Zelikovic I, Chesney RW. Development of renal amino-acid transport systems. Semin Nephrol. 1989;9:49–55.Google Scholar
  11. 11.
    Yaffe SI, Aranda JV, Kauffman RE, editors. Neonatal and pediatric pharmacology: therapeutic principles in practice (Chapter 3). 3rd ed. Philadelphia: Lippincott Williams and Wilkins; 2005. p. 20–31.Google Scholar
  12. 12.
    Sweet DH, Bush KT, Nigam SK. The organic anion transporter family: from physiology to ontogeny and the clinic. Am J Physiol. 2001;281:F197–205.Google Scholar
  13. 13.
    Chen N, Aleska K, Woodland C, Rieder M, Koren G. Ontogeny of drug elimination by the human kidney. Pediatr Nephrol. 2006;21:160–8.CrossRefGoogle Scholar
  14. 14.
    Peruzza L, Gianoglio B, Porcellini MG, Coppo R. Neonatal end stage renal failure associated with maternal ingestion of cyclo-oxygenase-type-1 selective inhibitor nimesulphide as tocolytic. Lancet. 1999;354:1615.CrossRefGoogle Scholar
  15. 15.
    Andreoli SP. Acute renal failure in the newborn. Semin Perinatol. 2004;28(2):112–23.CrossRefGoogle Scholar
  16. 16.
    Walker MW, Clark RH, Spitzer AR. Elevation in plasma creatinine and renal failure in premature neonates without major anomalies: terminology, occurrence and factors associated with increased risk. J Perinatol. 2011;31(3):199–205.CrossRefGoogle Scholar
  17. 17.
    Parikh CR, Devarajan P, Zappitelli M, Sint K, Thiessen-Philbrook H, Li S, Kim RW, Koyner JL, Coca SG, Edelstein CL, Shlipak MG, Garg AX, Krawczeski CD, TRIBE-AKI Consortium. Postoperative biomarkers predict acute kidney injury and poor outcomes after pediatric cardiac surgery. J Am Soc Nephrol. 2011;22(9):1737–47.CrossRefGoogle Scholar
  18. 18.
    Moghal NE, Embleton ND. Management of acute renal failure in the newborn. Semin Fetal Neonatal Med. 2006;11(3):207–13.CrossRefGoogle Scholar
  19. 19.
    Ahn SY, Mendoza S, Kaplan G, Reznik V. Chronic kidney disease in the VACTERL Association: clinical course and outcome. Pediatr Nephrol. 2009;24(5):1047–53.CrossRefGoogle Scholar
  20. 20.
    Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, Goldstein SL. Modified rIFLE criteria in critically ill children with acute kidney injury. Kidney Int. 2007;71:1028–35.CrossRefGoogle Scholar
  21. 21.
    Bellorno R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure-definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) group. Crit Care. 2004;8:R204–12.CrossRefGoogle Scholar
  22. 22.
    Ashkenazi DJ, Ambalavanan N, Goldstein SL. Acute kidney injury in critically ill newborns: what do we know? What do we need to learn? Pediatr Nephrol. 2009;24:265–74.CrossRefGoogle Scholar
  23. 23.
    Nobilis A, Kocsis I, Tóth-Heyn P, Treszl A, Schuler A, Tulassay T, Vásárhelyi B. Variance of ACE and AT1 receptor gene does not influence the risk of neonatal acute renal failure. Pediatr Nephrol. 2001;16(12):1063–6.CrossRefGoogle Scholar
  24. 24.
    Treszl A, Tóth-Heyn P, Kocsis I, Nobilis A, Schuler A, Tulassay T, Vásárhelyi B. Interleukin genetic variants and the risk of renal failure in infants with infection. Pediatr Nephrol. 2002;17(9):713–7.CrossRefGoogle Scholar
  25. 25.
    Guay-Woodford LM, Desmond RA. Autosomal recessive polycystic kidney disease: the clinical experience in North America. Pediatrics. 2003;111:1072–80.CrossRefGoogle Scholar
  26. 26.
    Gouyon JB, Guignard JP. Management of acute renal failure in newborns. Pediatr Nephrol. 2000;14(10–11):1037–44.CrossRefGoogle Scholar
  27. 27.
    Fukuda Y, Kojima T, Ono A, Matsuzaki S, Iwase S, Kobayashi Y. Factors causing hyperkalemia in premature infants. Am J Perinatol. 1989;6(1):76–9.CrossRefGoogle Scholar
  28. 28.
    Masilamani K, van der Voort J. The management of acute hyperkalaemia in neonates and children. Arch Dis Child. 2012;97:376–80.CrossRefGoogle Scholar
  29. 29.
    Gerstman BB, Kirkman R, Platt R. Intestinal necrosis associated with postoperative orally administered sodium polystyrene sulfonate in sorbitol. Am J Kidney Dis. 1992;20:159–61.CrossRefGoogle Scholar
  30. 30.
    Fujinaga S, Ohtomo Y, Someya T, Shimizu T, Yamashiro Y. Transient pseudohypoaldosteronism complicating acute renal failure in an infant with vesico-ureteral reflux and pyelonephritis. Pediatr Int. 2009;51(5):744–6.CrossRefGoogle Scholar
  31. 31.
    Bülchmann G, Schuster T, Heger A, Kuhnle U, Joppich I, Schmidt H. Transient pseudohypoaldosteronism secondary to posterior urethral valves—a case report and review of the literature. Eur J Pediatr Surg. 2001;11(4):277–9.CrossRefGoogle Scholar
  32. 32.
    Marra G, Goj V, Appiani AC, Dell Agnola CA, Tirelli SA, Tadini B, Nicolini U, Cavanna G, Assael BM. Persistent tubular resistance to aldosterone in infants with congenital hydronephrosis corrected neonatally. J Pediatr. 1987;110(6):868–72.CrossRefGoogle Scholar
  33. 33.
    Dissaneewate S, Vachvanichsanong P. Severe hyperphosphatemia in a newborn with renal insufficiency because of an erroneous medical prescription. J Ren Nutr. 2009;19(6):500–2.CrossRefGoogle Scholar
  34. 34.
    British National Formulary for Children. www.bnfc.org.uk.
  35. 35.
    Rao SC, Srinivasjois R, Hagan R, Ahmed M. One dose per day compared to multiple doses per day of gentamicin for treatment of suspected or proven sepsis in neonates. Cochrane Database Syst Rev. 2011;(11):CD005091.Google Scholar
  36. 36.
    Jenik AG, Ceriani Cernadas JM, Gorenstein A, Ramirez JA, Vain N, Armadans M, Ferraris JR. A randomized, double-blind, placebo-controlled trial of the effects of prophylactic theophylline on renal function in term neonates with perinatal asphyxia. Pediatrics. 2000;105(4):E45.CrossRefGoogle Scholar
  37. 37.
    Bakr AF. Prophylactic theophylline to prevent renal dysfunction in newborns exposed to perinatal asphyxia—a study in a developing country. Pediatr Nephrol. 2005;20(9):1249–52.CrossRefGoogle Scholar
  38. 38.
    Bhat MA, Shah ZA, Makhdoomi MS, Mufti MH. Theophylline for renal function in term neonates with perinatal asphyxia: a randomized, placebo-controlled trial. J Pediatr. 2006;149(2):180–4.CrossRefGoogle Scholar
  39. 39.
    Zubrow AB, Hulman S, Kushner H, Falkner B. Determinants of blood pressure in infants admitted to neonatal intensive care units: a prospective multicentre study. J Perinatal. 1995;15:470–9.Google Scholar
  40. 40.
    National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114(2 Suppl 4th Report):555–76.Google Scholar
  41. 41.
    Neal WA, Reynolds JW, Jrvis CW, Williams HJ. Umbilical artery catheterisation: demonstration of arterial thrombosis by aortography. Pediatrics. 1972;50:506–13.Google Scholar
  42. 42.
    Canpolat FE, Vurdakok M, Vigit S, Tekinalp G. Can peritoneal dialysis be used in preterm infants with gastrointestinal perforation? Pediatr Int. 2010;52(5):834–5.CrossRefGoogle Scholar
  43. 43.
    Cribbs RK, Greenbaum LA, Heiss KF. Risk factors for early peritoneal dialysis catheter failure in children. J Pediatr Surg. 2010;45(3):585–9.CrossRefGoogle Scholar
  44. 44.
    Golej J, Kitzmueller E, Hermon M, Boigner H, Burda G, Trittenwein G. Low-volume peritoneal dialysis in 116 neonatal and paediatric critical care patients. Eur J Pediatr. 2002;161(7):385–9.CrossRefGoogle Scholar
  45. 45.
    Yu JE, Park MS, Pai KS. Acute peritoneal dialysis in very low birth weight neonates using a vascular catheter. Pediatr Nephrol. 2010;25(2):367–71.CrossRefGoogle Scholar
  46. 46.
    Kostic D, Rodrigues AB, Leal A, Metran C, Nagaiassu M, Watanabe A, Ceccon ME, Tannuri U, Koch VH. Flow-through peritoneal dialysis in neonatal enema-induced hyperphosphatemia. Pediatr Nephrol. 2010;25(10):2183–6.CrossRefGoogle Scholar
  47. 47.
    Goldstein SL. Overview of pediatric renal replacement therapy in acute kidney injury. Semin Dial. 2009;22(2):180–4.CrossRefGoogle Scholar
  48. 48.
    Everdell NL, Coulthard MG, Crosier J, Keir MJ. A machine for haemodialysing very small infants. Pediatr Nephrol. 2005;20(5):636–43.CrossRefGoogle Scholar
  49. 49.
    Symons JM, Brophy PD, Gregory MJ, McAfee N, Somers MJ, Bunchman TE, Goldstein SL. Continuous renal replacement therapy in children up to 10 kg. Am J Kidney Dis. 2003;41(5):984–9.CrossRefGoogle Scholar
  50. 50.
    Hsu CW, Symons JM. Acute kidney injury: can we improve prognosis? Pediatr Nephrol. 2010;25(12):2401–12.CrossRefGoogle Scholar
  51. 51.
    Brenner BM, Lawler EV, Mackenzie HS. The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int. 1996;49(6):1774–7.CrossRefGoogle Scholar
  52. 52.
    Carey WA, Talley LI, Sehring SA, Jaskula JM, Mathias RS. Outcomes of dialysis initiated during the neonatal period for treatment of end-stage renal disease: a north American Pediatric renal trials and collaborative studies special analysis. Pediatrics. 2007;119(2):e468–73.CrossRefGoogle Scholar
  53. 53.
    Rheault MN, Rajpal J, Chavers B, Nevins TE. Outcomes of infants <28 days old treated with peritoneal dialysis for end-stage renal disease. Pediatr Nephrol. 2009;24(10):2035–9.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Paediatric NephrologyAlder Hey Children’s NHS Foundation TrustLiverpoolUK

Personalised recommendations