How Pathology Helps the Neonatal Surgeon

Chapter

Abstract

It is axiomatic that good pathology is essential for good patient care. For too long, pathologists have viewed their central role in diagnosis and clinical management as self-evident to all. Alas, the benefits of high-quality pathological investigation are not always self-evident, and much good work has gone unrecognized or unappreciated. To some extent we have ourselves to blame in that there has been a retreat of the pathologist to the autopsy room or the laboratory with a consequent lack of visibility in the clinical arena. The reduction in the volume and scope of pathology teaching in some undergraduate curricula has led to a lessening of the background pathological knowledge of many clinicians and, thus, the common meeting ground of clinician and pathologist has diminished. In pediatrics perhaps as nowhere else, is the need for a commonality of interest so great. Fortunately, in pediatrics the pathologist, by and large, is more visible in the clinical arena than in any other area. It is necessary for us all to strive to increase the commonality of interest for the benefit of the patient.

Keywords

Pathology Newborn surgery Paediatric surgery 

References

  1. 1.
    Nakhleh RE. What is quality in surgical pathology? J Clin Pathol. 2006;59:669–72.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Magrid MS, Cambor CL. The integration of pathology into the clinical years of undergraduate medical education: a survey and review of the literature. Hum Pathol. 2012;43(4):567–76. [Epub ahead of print].Google Scholar
  3. 3.
    Ambros PF, Ambros IM. Pathology and biology guidelines for resectable and unresectable neurobalstic tumors and bone marrow examination guidelines. Med Pediatr Oncol. 2001;37:492–504.Google Scholar
  4. 4.
    Rohr LY, Layfield LJ, Wallin D, Hardy D. A comparison of routine and rapid microwave tissue processing in a surgical pathology laboratory. Quality of histologic sections and advantages of microwave processing. Am J Clin Pathol. 2001;115:703–8.Google Scholar
  5. 5.
    Shi SR, Shi Y, Taylor CR. Antigen retrieval immunohistochemistry: review and future prospects in research and diagnosis over two decades. J Histochem Cytochem. 2011;59:13–32.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Langston C, Patterson K, Dishop MK, et al. A protocol for the handling of tissue obtained by operative lung biopsy: recommendations of the child pathology co-operative group. Pediatr Dev Pathol. 2006;9:173–80.Google Scholar
  7. 7.
    Rojiani AM, Cho ES. Neurologic applications of immunohistochmical fibre typing in the non-neoplastic muscle biopsy. Mod Pathol. 1998;11:334–8.Google Scholar
  8. 8.
    Kapur RP. Practical pathology and genetics of Hirschsprung’s disease. Semin Diagn Pathol. 2009;18:212–23.Google Scholar
  9. 9.
    Fisher C. Immunohistochemistry in diagnosis of soft tissue tumours. Histopathology. 2011;58:1001–12.Google Scholar
  10. 10.
    Slater O, Shipley J. Clinical relevance of molecular genetics to paediatric sarcomas. J Clin Pathol. 2007;60:1187–94.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Sebire NJ. Implications of molecular advances for diagnostic pediatric oncological pathology. Open Pathol J. 2010;4:40–4.Google Scholar
  12. 12.
    Dutta HK, Mathur M, Bhatnagar V. A histopathological study of esophageal atresia and tracheoesophageal fistula. J Pediatr Surg. 2000;35:438–41.Google Scholar
  13. 13.
    Stewart RJ, Bruce J, Beasley SW. Oesophageal duplication cyst: another cause of neonatal respiratory distress. J Pediatr Child Health. 1993;29:391–2.Google Scholar
  14. 14.
    Gul A, Tekoglu G, Aslan H, Cebeci A, Erol O, Unal M, Ceylan Y. prenatal sonographic features of esopahageal and ileal duplications at 18 weeks of gestation. Prenat Diagn. 2004;24:969–71.Google Scholar
  15. 15.
    Nakazawa N, Okazaki T, Miyano T. Prenatal detection of isolated gastric duplication cyst. Pediatr Surg Int. 2005;21:831–4.Google Scholar
  16. 16.
    Lai ECS, Tompkins RK. Heterotopic pancreas. Review of a 26 year experience. Am J Surg. 1986;151:697–700.Google Scholar
  17. 17.
    Takeyama J, Sato T, Tanaka H, Nio M. Adenomyoma of the stomach mimicking infantile hypertrophic pyloric stenosis. J Pediatr Surg. 2007;42:E11–2.Google Scholar
  18. 18.
    Romeo C, Santoro G, Impellizzeri P, Manganaro A, Cutroneo G, Trimarchi E, Antonuccio P, Anastasi G, Zuccarello B. Sarcoglycan immunoreactivity is lacking in infantile hypertrophic pyloric stenosis. A confocal laser scanning microscopic study. Pediatr Med Chir. 2007;29:32–7.Google Scholar
  19. 19.
    Grosfeld JL, Ballantine TVN, Shoemaker R. Operative management of intestinal atresia and stenosis based on pathologic findings. J Pediatr Surg. 1979;14:368–75.Google Scholar
  20. 20.
    Sinha CK, Fishman J, Clarke SA. Neonatal Meckel’s diverticulum: spectrum of presentation. Pediatr Emerg Care. 2009;25:348–9.Google Scholar
  21. 21.
    Cserni G. Gastric pathology in Meckel’s diverticulum. Review of cases resected between 1965 and 1995. Am J Clin Pathol. 1996;106:782–5.Google Scholar
  22. 22.
    Pacilli M, Sebire NJ, Maritsi D, Kiely EM, Drake DP, Curry JI, Pierro A. Umbilical polyp in infants and children. Eur J Pediatr Surg. 2007;17:397–9.Google Scholar
  23. 23.
    Sun CC, Raffel LJ, Wright LL, Mergner WJ. Immature renal tissue in colonic wall of patient with caudal regression syndrome. Arch Pathol Lab Med. 1986;110:653–5.Google Scholar
  24. 24.
    Sen G, Sebire NJ, Olsen O, Kiely E, Levitt G. Familial Currarino syndrome presenting with peripheral primitive neuroectodermal tumour arising with a sacral teratoma. Pedaitr Blood Cancer. 2008;50:172–5.Google Scholar
  25. 25.
    Ueki I, Nakashima E, Kumagai M, Tananari Y, Kimura A, Fukuda S, Hashimoto T. Intussusception in neonates: analysis of 14 Japanese patients. J Paediatr Child Health. 2004;40:388–91.Google Scholar
  26. 26.
    Avansino JR, Bjerke S, Hendrickson M, Stelzner M, Sawin R. Clinical features and treatment outcome of intussusception in premature neonates. J Pediatr Surg. 2003;38:1818–21.Google Scholar
  27. 27.
    Millar AJ, Rode H, Cywes S. Malrotation and volvulus in infancy and childhood. Semin Pediatr Surg. 2003;12:229–36.Google Scholar
  28. 28.
    Garza-Cox S, Keeney SE, Angel CA, Thompson LL, Swischuk LE. Meconium obstruction in the very low birth weight premature infant. Pediatrics. 2004;114:285–90.Google Scholar
  29. 29.
    Kubota A, Shiraishi J, Kawahara H, Okuyama H, Yoneda A, Nakai H, Nara K, Kitajima H, Fujimura M, Kuwae Y, Nakayama M. Meconium-related ileus in extremely low-birthweight neonates: etiological considerations from histology and radiology. Pediatr Int. 2011;53:887–91.Google Scholar
  30. 30.
    Bruder E, Knecht Y, Kasper M, Chaffard R, Ipsen S, Terracciano L, Meier-Ruge WA. Enzyme histochemical diagnosis of gastrointestinal motility disorders. A laboratory guide. Pathologe. 2007;28:93–100.Google Scholar
  31. 31.
    Tomita R, Munakata K, Howard ER, Fujisaki S. Histological studies on Hirschsprung’s disease and its allied disorders in childhood. Hepatogastroenterology. 2004;51:1042–4.Google Scholar
  32. 32.
    Kapur RP, Reed RC, Finn LS, Patterson K, Johanson J, Rutledge JC. Calretinin immunohistochemistry versus acetylcholinesterase histochemistry in the evaluation of suction rectal biopsies for Hirschsprung disease. Pediatr Dev Pathol. 2009;12:6–15.Google Scholar
  33. 33.
    Dimmick JE, Bove KE. Cytomegalovirus infection of the bowel in infancy: Pathogenetic and diagnostic significance. Pediatr Pathol. 1984;2:95–102.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Bruder E, Meier-Ruge WA. Intestinal neuronal dysplasia type B: how do we understand it today? Pathologe. 2007;28:137–42.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Meier-Ruge WA, Bruder E, Kapur RP. Intestinal neuronal dysplasia type B: one giant ganglion is not good enough. Pediatr Dev Pathol. 2006;9:444–52.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Schulten D, Holschneider AM, Meier-Ruge W. Proximal segment histology of resected bowel in Hirschsprung’s disease predicts postoperative bowel function. Eur J Pediatr Surg. 2000;10:378–81.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Huang SF, Chen CC, Lai HS. Prediction of the outcome of pull-through surgery for Hirschsprung’s disease using acetylcholinesterase activity. J Formos Med Assoc. 2001;100:798–804.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Langer JC. Persistent obstructive symptoms after surgery for Hirschsprung’s disease: development of a diagnostic and therapeutic algorithm. J Pediatr Surg. 2004;39:1458–62.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Duhamel B. A new operation for the treatment of Hirschprung’s disease. Arch Dis Child. 1960;35:38–42.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Elhalaby EA, Coran AG, Blane CE, Hirschl RB, Teitelbaum DH. Enterocolitis associated with Hirschsprung’s disease: A clinical-radiological characterization based on 168 patients. J Pediatr Surg. 1995;30:76.Google Scholar
  41. 41.
    Elhalaby EA, Teitelbaum DH, Coran AG, Heidelberger KP. Enterocolitis associated with Hirschsprung’s disease: A clinical histopathological correlative study. J Pediatr Surg. 1995;30:1023.Google Scholar
  42. 42.
    Teitelbaum DH, Caniano DA, Qualman SJ. The pathophysiology of Hirschsprung’s-associated enterocolitis: importance of histologic correlates. J Pediatr Surg. 1989;24:1271–7.Google Scholar
  43. 43.
    Pastor AC, Osman F, Teitelbaum DH, Caty MG, Langer JC. Development of a standardized definition for Hirschsprung’s-associated enterocolitis: a Delphi analysis. J Pediatr Surg. 2009;44:251–6.Google Scholar
  44. 44.
    Bruder E, Meier-Ruge WA. Hypoganglionosis as a cause of chronic constipation. Pathologe. 2007;28:131–6.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Smith VV. Intestinal neuronal density in childhood: a baseline for the objective assessment of hypo- and hyperganglionosis. Pediatr Pathol. 1993;13:225–37.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Meier-Ruge WA, Bruder E. The morphological characteristics of aplastic and atrophic desmosis of the intestine. Pathologe. 2007;28:149–54.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Rolle U, Puri P. Structural basis of voiding dysfunction in megacystis microcolon intestinal hypoperistalsis syndrome. J Pediatr Urol. 2006;2:277–84.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Hsueh W, Caplan MS, Qu XW, Tan XD, De Plaen IG, Gonzalez-Crussi F. Neonatal necrotizing enterocolitis: clinical considerations and pathogenetic concepts. Pediatr Dev Pathol. 2003;6:6–23.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Ballance WA, Dahms BB, Shenker N, Kliegman RM. Pathology of neonatal necrotizing enterocolitis: a ten-year experience. J Pediatr. 1990;117(1 Pt 2):S6–13.PubMedPubMedCentralGoogle Scholar
  50. 50.
    DeSa DJ. The spectrum of ischemic bowel disease in the newborn. Perspect Pediatr Pathol. 1976;3:273–309.Google Scholar
  51. 51.
    Li MK, Crawford JM. The pathology of cholestasis. Semin Liver Dis. 2004;24:21–42.Google Scholar
  52. 52.
    Kahn E. Biliary atresia revisited. Pediatr Dev Pathol. 2004;7:109–24.Google Scholar
  53. 53.
    Crittenden SL, McKinley MJ. Choledochal cyst—clinical features and classification. Am J Gastroenterol. 1985;80:643–7.Google Scholar
  54. 54.
    Ando H, Ito T, Sugito T. Histological study of the choledochal cyst wall. Jpn J Gastroenterol. 1987;847:1797–801.Google Scholar
  55. 55.
    Allard RH. The thyroglossal cyst. Head Neck Surg. 1982;5:134–46.Google Scholar
  56. 56.
    Waldhausen JHT. Branchial cleft and arch anomalies in children. Semin Pediatr Surg. 2006;15:64–9.Google Scholar
  57. 57.
    Dunham B, Guttenberg M, Morrison W, Tom L. The histologic relationship of preauricular sinuses to auricular cartilage. Arch Otolaryngol Head Neck Surg. 2009;135:1262–5.Google Scholar
  58. 58.
    Bloom D, Carvalho D, Edmonds J, Magit A. Neonatal dermoid cyst of the floor of the mouth extending to the midline neck. Arch Otolaryngol Head Neck Surg. 2002;128:68–70.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Ustundaq E, Iseri M, Keskin G, Yayla B. Muezzinoglu B Cervical bronchogenic cysts in head and neck region. J Laryngol Otol. 2005;119:419–23.Google Scholar
  60. 60.
    Goswamy J, de Kruijf S, Humphrey G, Rothera MP, Bruce IA. Bronchogenic cysts as a cause of infantile stridor: case report and literature review. J Laryngol Otol. 2011;125:1094–7.Google Scholar
  61. 61.
    Billings KR, Rollins NK, Timmons C, Biavati MJ. Infected neonatal cervical thymic cyst. Otolaryngol Head Neck Surg. 2000;123:651–4.Google Scholar
  62. 62.
    Khariwala SS, Nicollas R, Triglia JM, et al. Cervical presentations of thymic anomalies in children. Int J Pediatr Otorhinolaryngol. 2004;68:909–14.PubMedPubMedCentralGoogle Scholar
  63. 63.
    De Caluwe D, Ahmed M, Puri P. Cervical thymic cysts. Pediatr Surg Int. 2002;18:477–9.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Perkins JA, Manning SC, Tempero RM, Cunningham MJ, Edmonds JL Jr, Hoffer FA, Egbert MA. Lymphatic malformations: review of current treatment. Otolaryngol Head Neck Surg. 2010;142:795–803.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Gallagher PG, Mahoney MJ, Gosche JR. Cystic hygroma in the fetus and newborn. Semin Perinatol. 1999;23:341–56.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Langston C. New concepts in the pathology of congenital lung malformations. Semin Pediatr Surg. 2003;12:17–37.Google Scholar
  67. 67.
    Biyyam DR, Chapman T, Ferguson MR, Deutsch G, Dighe MK. Congenital lung abnormalities: embryologic features, prenatal diagnosis, and postnatal radiologic-pathologic correlation. Radiographics. 2010;30:1721–38.Google Scholar
  68. 68.
    Riedlinger WFJ, Vargas SO, Jennings RJ, et al. Bronchial atresia is common to extralobar sequestration, intralobar sequestration, congenital cystic adenomatoid malformation and lobar emphysema. Pediatr Dev Pathol. 2006;9:361–73.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Stocker JT, Drake RM, Madwell JE. Cystic and congenital lung diseases in the newborn. Perspect Pediatr Pathol. 1978;4:93–154.Google Scholar
  70. 70.
    Stocker JT. Congenital pulmonary airway malformation a new name for it and expanded classification of congenital cystic adenomatoid malformation of the lung. Histopathology. 2002;41(Suppl 2):424–58.Google Scholar
  71. 71.
    Shimohira M, Hara M, Kitase M, Takeuchi M, Shibamoto Y, Kurono K, Shimizu S. Congenital pulmonary airway malformation: CT-pathologic correlation. J Thorac Imaging. 2007;22:149–53.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Hill DA, Jarzembowski JA, Priest JR, Williams G, Schoettler P, Dehner LP. Type I pleuropulmonary blastoma: pathology and biology study of 51 cases from the international pleuropulmonary blastoma registry. Am J Surg Pathol. 2008;32:282–95.Google Scholar
  73. 73.
    Nasr A, Himidan S, Pastor AC, Taylor G, Kim PC. Is congenital cystic adenomatoid malformation a premalignant lesion for pleuropulmonary blastoma? J Pediatr Surg. 2010;45:1086–9.Google Scholar
  74. 74.
    Wei Y, Li F. Pulmonary sequestration: a retrospective analysis of 2625 cases in China. Eur J Cardiothorac Surg. 2011;40(1):e39–42.Google Scholar
  75. 75.
    Katayama Y, Kusagawa H, Komada T, Shomura S, Tenpaku H. Bronchopulmonary foregut malformation. Gen Thorac Cardiovasc Surg. 2011;59:767–70.Google Scholar
  76. 76.
    Imai Y, Mark EJ. Cystic adenomatoid change is common to various forms of cystic lung diseases of children: a clinicopathologic analysis of 10 cases with emphasis on tracing the bronchial tree. Arch Pathol Lab Med. 2002;126:934–40.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Tandon M, Warnock ML. Plexogenic angiopathy in pulmonary intralobar sequestrations: pathogenetic mechanisms. Hum Pathol. 1993;24:263–73.Google Scholar
  78. 78.
    Tempe DK, Virmani S, Javetkar S, Banerjee A, Puri SK, Datt V. Congenital lobar emphysema: pitfalls and management. Ann Card Anaesth. 2010;1(3):53–8.Google Scholar
  79. 79.
    Boothroyd AE, Barson AJ. Pulmonary interstitial emphysema—a radiological and pathological correlation. Pediatr Radiol. 1988;18:194–9.Google Scholar
  80. 80.
    Aggarwal P, Mortellaro VE, St Peter SD. Pulmonary interstitial emphysema presenting as a congenital cystic adenomatous malformation on CT. Eur J Pediatr Surg. 2011;21:404–6.Google Scholar
  81. 81.
    Jassal MS, Benson JE, Mogayzel PJ Jr. Spontaneous resolution of diffuse persistent pulmonary interstitial emphysema. Pediatr Pulmonol. 2008;43:615–9.Google Scholar
  82. 82.
    Sen P, Thakur N, Stockton DW, Langston C, Bejjani BA. Expanding the phenotype of alveolar capillary dysplasia. J Pediatr. 2004;145:646–51.Google Scholar
  83. 83.
    Stankiewicz P, Sen P, Bhatt SS, et al. Genomic and genic deletions of the FOX gene cluster on 16q24.1 and inactivating mutations of FOXF1 cause alveolar capillary dysplasia and other malformations. Am J Hum Genet. 2009;84:780–91.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Al-Bhalal L, Akhtar M. Molecular basis of autosomal recessive polycystic kidney disease (ARPKD). Adv Anat Pathol. 2008;15:54–8.Google Scholar
  85. 85.
    Wen J. Congenital hepatic fibrosis in autosomal recessive polycystic kidney disease. Clin Transl Sci. 2011;4:460–5.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Srinath A, Shneider BL. Congenital hepatic fibrosis and autosomal recessive polycystic kidney disease: an analytic review of the literature. J Pediatr Gastroenterol Nutr. 2012;54(5):580–7. [Epub ahead of print].PubMedPubMedCentralGoogle Scholar
  87. 87.
    Lennerz JK, Spence DC, Iskandar SS, Dehner LP, Liapis H. Glomerulocystic kidney: one hundred-year perspective. Arch Pathol Lab Med. 2010;134:583–605.Google Scholar
  88. 88.
    Salomon R, Saunier S, Niaudet P. Nephronophthisis. Pediatr Nephrol. 2009;24:2333–44.Google Scholar
  89. 89.
    Uetani N, Bouchard M. Plumbing in the embryo: developmental defects of the urinary tracts. Clin Genet. 2009;75:307–17.Google Scholar
  90. 90.
    Chevalier RL. Effects of ureteral obstruction on renal growth. Semin Nephrol. 1995;15:353–60.Google Scholar
  91. 91.
    Nandi B, Murphy FL. Neonatal testicular torsion: a systematic literature review. Pediatr Surg Int. 2011;27:1037–40.Google Scholar
  92. 92.
    Grady RW, Mitchell ME, Carr MC. Laparoscopic and histologic evaluation of the inguinal vanishing testis. Urology. 1998;52(5):866–9.Google Scholar
  93. 93.
    Schindler AM, Diaz P, Cuendet A, Sizonenko PC. Cryptorchidism: a morphological study of 670 biopsies. Helv Paediatr Acta. 1987;423:145–58.Google Scholar
  94. 94.
    Sebire NJ, Juaniaux E. Fetal and placental malignancies: prenatal diagnosis and management. Ultrasound Obstet Gynecol. 2009;33:235–44.Google Scholar
  95. 95.
    Lakhoo K. Neonatal teratomas. Early Hum Dev. 2010;86:643–7.Google Scholar
  96. 96.
    Fagiana AM, Barnett S, Reddy VS, Milhoan KA. Management of a fetal intrapericardial teratoma: a case report and review of the literature. Congenit Heart Dis. 2010;5:51–5.Google Scholar
  97. 97.
    Shimada H, Ambros IM, Dehner LP, Hata J, Joshi VV, Roald B, Stram DO, Gerbing RB, Lukens JN, Matthay KK, Castleberry RP. The International Neuroblastoma Pathology Classification (the Shimada system). Cancer. 1999;86(2):364–72.Google Scholar
  98. 98.
    Jennings RW, LaQuaglia MP, Leong K, Hendren WH, Adzick NS. Fetal neuroblastoma: prenatal diagnosis and natural history. J Pediatr Surg. 1993;28(9):1168–74.Google Scholar
  99. 99.
    George RE, Variend S, Cullinane C, Cotterill SJ, McGuckin AG, Ellershaw C, Lunec J, Pearson AD; United Kingdom Children Cancer Study Group. Relationship between histopathological features, MYCN amplification, and prognosis: a UKCCSG study. United Kingdom Children Cancer Study Group. Med Pediatr Oncol. 2001;36:169–76.Google Scholar
  100. 100.
    Chan EL, Harris RE, Emery KH, Gelfand MJ, Collins MH, Gruppo RA. Favorable histology, MYCN-amplified 4S neonatal neuroblastoma. Pediatr Blood Cancer. 2007;48:479–82.Google Scholar
  101. 101.
    Makin E, Davenport M. Fetal and neonatal liver tumours. Early Hum Dev. 2010;86:637–42.Google Scholar
  102. 102.
    Reed RC, Kapur RP. Hepatic mesenchymal hamartoma: a disorder of imprinting? Pedaitr Dev Pathol. 2008;11:264–5.Google Scholar
  103. 103.
    Francis B, Hallam L, Kecskes Z, Ellwood D, Croaker D, Kent A. Placental mesenchymal dysplasia associated with hepatic mesenchymal hamartoma in the newborn. Pediatr Dev Pathol. 2007;10:50–4.Google Scholar
  104. 104.
    Powis M. Neonatal renal tumours. Early Hum Dev. 2010;86:607–12.Google Scholar
  105. 105.
    Sebire NJ, Vujanic GM. Paediatric renal tumours: recent developments, new entities and pathological features. Histopathology. 2009;54:516–28.Google Scholar
  106. 106.
    Anderson J, Gibson S, Sebire NJ. Expression of ETV6-NTRK in classical, cellular and mixed subtypes of congenital mesoblastic nephroma. Histopathology. 2006;48:748–53.Google Scholar
  107. 107.
    Magdum SA. Neonatal brain tumours—a review. Early Hum Dev. 2010;86:627–31.Google Scholar
  108. 108.
    Manoranjan B, Provias JP. Congenital brain tumors: diagnostic pitfalls and therapeutic interventions. J Child Neurol. 2011;26:599–614.Google Scholar
  109. 109.
    Alobeid B, Beneck D, Sreekantaiah C, Abbi RK, Slim MS. Congenital pulmonary myofibroblastic tumor: a case report with cytogenetic analysis and review of the literature. Am J Surg Pathol. 1997;21:610–4.Google Scholar
  110. 110.
    De Norhona L, Casteleins Cecilio WA, da Silva TFA, Maggio EM, Serapiao MJ. Congenital peribronchial myofibroblastic tumour: a case report. Pediatr Dev Pathol. 2010;13:243–6.Google Scholar
  111. 111.
    Horikoshi T, Kikuchi A, Matsumoto Y, et al. Fetal hydrops associated with congenital pulmonary myofibroblastic tumor. J Obstet Gynaecol Res. 2005;31:552–5.Google Scholar
  112. 112.
    Dishop MK, McKay EM, Kreiger PA, Priest JR, Williams GM, Langston C, et al. Fetal lung interstitial tumor (FLIT) A proposed newly recognized lung tumor of infancy to be differentiated from cystic pleuropulmonary blastoma and other developmental lesions. Am J Surg Pathol. 2010;34:1762–72.Google Scholar
  113. 113.
    Dehner LP. Pleuropulmonary blastoma is the pulmonary blastoma of childhood. Semin Diagn Pathol. 1994;11:144–51.Google Scholar
  114. 114.
    Boman H, Hill DA, Williams GM, et al. Familial association of pleuropulmonary blastoma with cystic nephroma and other renal tumors: a report from the International Pleuropulmonary Blastoma Registry. J Pediatr. 2006;149:850–4.Google Scholar
  115. 115.
    Hill DA, Ivanovich J, Priest JR, Gurnett CA, Dehner LP, Desruisseau D, Jarzembowski JA, Wikenheiser-Brokamp KA, Suarez BK, Whelan AJ, Williams G, Bracamontes D, Messinger Y, Goodfellow PJ. DICER1 mutations in familial pleuropulmonary blastoma. Science. 2009;325:965.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Pawel BR, Crombleholme TM. Mesenchymal hamartoma of the chest wall. Pediatr Surg Int. 2006;22:398–400.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Enjolras O. Classification and management of the various superficial vascular anomalies: hemangiomas and vascular malformations. J Dermatol. 1997;24:701–10.Google Scholar
  118. 118.
    Smolinski KN, Yan AC. Hemangiomas of infancy: clinical and biological characteristics. Clin Pediatr (Phila). 2005;44:747–66.Google Scholar
  119. 119.
    North PE, Waner M, Mizeracki A, Mihm MC Jr. GLUT1: a newly discovered immunohistochemical marker for juvenile hemangiomas. Hum Pathol. 2000;31:11–22.Google Scholar
  120. 120.
    Lyons LL, North PE, Mac-Moune Lai F, Stoler MH, Folpe AL, Weiss SW. Kaposiform hemangioendothelioma: a study of 33 cases emphasizing its pathologic, immunophenotypic, and biologic uniqueness from juvenile hemangioma. Am J Surg Pathol. 2004;28:559–68.Google Scholar
  121. 121.
    Debelenko LV, Perez-Atayde AR, Mulliken JB, Liang MG, Archibald TH, Kozakewich HP. D2–40 immunohistochemical analysis of pediatric vascular tumors reveals positivity in kaposiform hemangioendothelioma. Mod Pathol. 2005;18(11):1454–60.Google Scholar
  122. 122.
    Ferrari A, Casanova M, Bisogno G, Zanetti I, Cecchetto G, DeBernardi B, Riccardi R, Tamaro P, Meazza C, Alaggio R, Ninfo V, Carli M. Italian Cooperative Group Rhabdomyosarcoma in infants younger than one year old: a report from the Italian Cooperative Group. Cancer. 2003;97:2597–604.Google Scholar
  123. 123.
    Yoshino K, Takeuchi M, Nakayama M, Suehara N. Congenital cervical rhabdomyosarcoma arising in one fetus of a twin pregnancy. Fetal Diagn Ther. 2005;20:291–5.Google Scholar
  124. 124.
    Parham DM. The molecular biology of childhood rhabdomyosarcoma. Semin Diagn Pathol. 1994;11:39–46.Google Scholar
  125. 125.
    Morotti RA, Nicol KK, Parham DM, Teot LA, Moore J, Hayes J, Meyer W, Qualman SJ. An immunohistochemical algorithm to facilitate diagnosis and subtyping of rhabdomyosarcoma: the Children’s Oncology Group experience. Am J Surg Pathol. 2006;30:962–8.Google Scholar
  126. 126.
    Knezevich SR, McFadden DE, Tao W, Lim JF, Sorensen PH. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet. 1998;18:184–7.Google Scholar
  127. 127.
    Yan AC, Chamlin SL, Liang MG, Hoffman B, Attiyeh EF, Chang B, Honig PJ. Congenital infantile fibrosarcoma: a masquerader of ulcerated hemangioma. Pediatr Dermatol. 2006;23:330–4.Google Scholar
  128. 128.
    Alaggio R, Barisani D, Ninfo V, Rosolen A, Coffin CM. Morphologic overlap between infantile myofibromatosis and infantile fibrosarcoma: a pitfall in diagnosis. Pediatr Dev Pathol. 2008;11:355–62.Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Camelia Botnar LaboratoriesGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK

Personalised recommendations