Skip to main content

Congenital Cardio Thoracic Surgery

  • Chapter
  • First Online:
Rickham's Neonatal Surgery

Abstract

The word congenital derives its meaning from Latin word ‘Congenitus’ where ‘con’ means ‘together’ and ‘genitus’ means ‘born’. Congenital heart disease refers to any defect of the heart present from birth. It includes structural defects, congenital arrhythmias, and cardiomyopathies. At least eight in every 1000 babies are born with a heart or circulatory condition and only a quarter of these are detected by ultrasound scans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffman J. The global burden of congenital heart disease. Cardiovasc J Afr. 2013;24(4):141–5.

    Article  Google Scholar 

  2. NICOR statement 2013, National institute for cardio vascular outcome.

    Google Scholar 

  3. Altman CA, Fulton DR, Weisman LE. Congenital heart disease in the newborn: presentation and screening for critical CHD. Uptodate.com.

  4. Sabiston and Spencer. Surgery of chest. 8th ed.

    Google Scholar 

  5. Stalsberg H, DeHaan RL. The precardiac areas and formation of the tubular heart in the chick embryo. Dev Biol. 1969;19:128–59.

    Article  CAS  Google Scholar 

  6. Nonaka S, Tanaka Y, Okada Y, et al. Randomization of left right asymmetry due to loss of nodal cilia generating leftward flow of extra embryonic fluid in mice lacking KIF3B motor protein [published erratum appears in Cell 1999;99(1):117]. Cell. 1998;95:829–37.

    Article  CAS  Google Scholar 

  7. Levin M, Johnson RL, Stern CD, et al. A molecular pathway determining let-right asymmetry in chick embryogenesis. Cell. 1995;82:803–14.

    Article  CAS  Google Scholar 

  8. Van Praagh S, Santini F, Sanders SP. Cardiac malpositions with special emphasis on visceral heterotaxy (asplenia and polysplenia syndromes). In: Fyler DC, editor. Nadas’ pediatric cardiology. Philadelphia: Hanley & Belfus; 1992. p. 589–608.

    Google Scholar 

  9. Burn J, Goodship J. Congenital heart disease. In: Rimoin DL, Conner JM, Pyeritz RE, Emery AEH, editors. Emery and Rimion’s Principles and Practice of Medical Genetics. London: Churchill Livingstone; 1996.

    Google Scholar 

  10. Kasman N, Brady K. Cerebral oximetry for pediatricanesthesia: why do intelligent clinicians disagree? Pediatr Anesth. 2011;21:473–8.

    Article  Google Scholar 

  11. Journois D, Pouard P, Greeley WJ, Mauriat P, Vouhe P, Safran D. Hemofiltration during cardiopulmonary bypass in pediatric cardiac surgery. Effects on hemostasis, cytokines, and complement components. Anesthesiology. 1994;81:1181–9. discussion 26A–27A

    Article  CAS  Google Scholar 

  12. Gaynor JW. The effect of modified ultrafiltration on the postoperative course in patients with congenital heart disease. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2003;6:128–39.

    Article  Google Scholar 

  13. Kahler RL, Braunwald E, Plauth WH Jr, et al. Familial congenital heart disease: familial occurrence of atrial septal defect with A-V conduction abnormalities, supravalvular aortic and pulmonic stenosis, and ventricular septal defect. Am J Med. 1966;40:384–99.

    Article  Google Scholar 

  14. Campbell M. Natural history of atrial septal defect. Br Heart J. 1970;32:820–6.

    Article  CAS  Google Scholar 

  15. Samanek M, Voriskova M. Congenital heart disease among 815,569 children born between 1980 and 1990 and their 15 year survival: a prospective Bohemia survival study. Pediatr Cardiol. 1999;20:411–7.

    Article  CAS  Google Scholar 

  16. Haworth SG. Pulmonary vascular disease in secundum atrial septal defect in childhood. Am J Cardiol. 1983;51:265–72.

    Article  CAS  Google Scholar 

  17. Murphy JG, Gersh BJ, McGoon MD, et al. Long-term outcome after surgical repair of isolated atrial septal defect. Follow-up at 27–32 years. N Engl J Med. 1990;323:1645–50.

    Article  CAS  Google Scholar 

  18. Pearlman AS, Borer JS, Clark CE, et al. Abnormal right ventricular size and ventricular septal motion after atrial septal defect closure. Am J Cardiol. 1978;41:295–301.

    Article  CAS  Google Scholar 

  19. Konstantinides S, Geibel A, Olschewsky M, et al. A comparison of surgical and medical therapy for atrial septal defect in adults. N Engl J Med. 1995;333:469–73.

    Article  CAS  Google Scholar 

  20. Kort HW, Balzer DT, Johnson MC. Resolution of right heart enlargement after closure of secundum atrial septal defect with transcatheter technique. J Am Coll Cardiol. 2001;38:1528–32.

    Article  CAS  Google Scholar 

  21. Jemielity M, Dyszkiewicz W, Paluszkiewicz L, et al. Do patients over 40 years of age benefit from surgical closure of atrial septal defects? Heart. 2001;85:300–3.

    Article  CAS  Google Scholar 

  22. Apitz C, Webb GD, Redington AN. Tetralogy of fallot. Lancet. 2009;374(9699):1462–71.

    Article  CAS  Google Scholar 

  23. Joanne P. Starr tetralogy of fallot: yesterday and today. World J Surg. 2010;34(4):658–68.

    Article  Google Scholar 

  24. Alexiou C, Mahmoud H, Al-Khaddour A, Gnanapragasam J, Salmon AP, Keeton BR, Monro JL. Outcome after repair of tetralogy of fallot in the first year of life. Ann Thorac Surg. 2001;71(2):494–500.

    Article  CAS  Google Scholar 

  25. Knott-Craig CJ, Elkins RC, Lane MM, Holz J, McCue C, Ward KE. A 26 years experience with surgical management of tetralogy of fallot : risk analysis for mortality or late reintervention. Ann Thorac Surg. 1998;66(2):506–11.

    Article  CAS  Google Scholar 

  26. Dave HH, Buechel ER, Dodge-Khatami A, Kadner A, Rousson V, Bauersfeld U, Prêtre R. Early insertion of a pulmonary valve for chronic regurgitation helps restoration of ventricular dimensions. Ann Thorac Surg. 2005;80(5):1615–20. discussion 1620–1

    Article  Google Scholar 

  27. Gelb BD. Genetic basis of congenital heart disease. Curr Opin Cardiol. 2004;19:110–5.

    Article  Google Scholar 

  28. Berger TJ, Blackstone EH, Kirklin JW, Bargeron LM, Hazelrig JB, Turner ME. Survival and probability of cure with and without surgery in complete atrioventricular canal. Ann Thorac Surg. 1979;27:104–11.

    Article  CAS  Google Scholar 

  29. Frontera-Izquierdo P, Cabezuelo-Huerta G. Natural and modified history of complete atrioventricular septal defect—a 17 year study. Arch Dis Child. 1990;65(9):964–7.

    Article  CAS  Google Scholar 

  30. Daebritz S, del Nido PJ. Surgical management of common atrioventricular canal Progress in pediatric cardiology. 1999;10:161–171.

    Google Scholar 

  31. Bakhtiary F, Takacs J, Cho MY, Razek V, Dähnert I, Doenst T, Walther T, Borger MA, Mohr FW, Kostelka M. Long-term results after repair of complete atrioventricular septal defect with two-patch technique. Ann Thorac Surg. 2010;89(4):1239–43.

    Article  Google Scholar 

  32. Fyler DC, Buckley LP, Hellenbrand WE. Report of the New England regional infant cardiac program. Pediatrics. 1990;65(Suppl):375–461.

    Google Scholar 

  33. Liebman J, Cullum L, Belloc NB. Natural history of transposition of the great arteries. Anatomy and birth and death characteristics. Circulation. 1969;40(2):237–62.

    Article  CAS  Google Scholar 

  34. Van Praagh R, Van Praagh S. Isolated ventricular inversion. A consideration of the morphogenesis, definition and diagnosis of nontransposed and transposed great arteries. Am J Cardiol. 1966;17(3):395–406.

    Article  Google Scholar 

  35. Goldmuntz E, Bamford R, Karkera JD, dela Cruz J, Roessler E, Muenke M. CFC1 mutations in patients with transposition of the great arteries and double-outlet right ventricle. Am J Hum Genet. 2002;70(3):776–80. Epub 2002 Jan 17

    Article  CAS  Google Scholar 

  36. Baño-Rodrigo A, Quero-Jiménez M, Moreno-Granado F, Gamallo-Amat C. Wall thickness of ventricular chambers in transposition of the great arteries: surgical implications. J Thorac Cardiovasc Surg. 1980;79(4):592–7.

    Google Scholar 

  37. Pigula FA, Vida V, Del Nido P, Bacha E. Contemporary results and current strategies in the management of hypoplastic left heart syndrome. Semin Thorac Cardiovasc Surg. 2007;19:238–44.

    Article  Google Scholar 

  38. Fyler DC, Buckley LP, Hellenbrand WE, et al. Report of the New England regional infant cardiac program. Pediatrics. 1980;65(Suppl):377–461.

    Google Scholar 

  39. Laursen HB. Some epidemiologic aspects of congenital heart disease in Denmark. Acta Paediatr Scand. 1980;69:619–24.

    Article  CAS  Google Scholar 

  40. Tchervenkov CI, Jacobs ML, Tahta SA. Congenital heart surgery nomenclature and database project: hypoplastic left heart syndrome. Ann Thorac Surg. 2000;69(4 Suppl):S170–9.

    Article  CAS  Google Scholar 

  41. Grossfeld PD, Mattina T, Lai Z. The 11q terminal deletion disorder: a prospective study of 110 cases. Am J Med Genet A. 2004;129:51–61.

    Article  Google Scholar 

  42. Dasgupta C, Martinez AM, Zuppan CW, Shah MM, Bailey LL, Fletcher WH. Identification of connexin43 (alpha1) gap junction gene mutations in patients with hypoplastic left heart syndrome by denaturing gradient gel electrophoresis (DGGE). Mutat Res. 2001;479:173–86.

    Article  CAS  Google Scholar 

  43. Elliott DA, Kirk EP, Yeoh T. Cardiac homeobox gene NKX2–5 mutations and congenital heart disease: associations with atrial septal defect and hypoplastic left heart syndrome. J Am Coll Cardiol. 2072–2076;41:2003.

    Google Scholar 

  44. McElhinney DB, Geiger E, Blinder J, Benson DW, Goldmuntz E. NKX2.5 mutations in patients with congenital heart disease. J Am Coll Cardiol. 2003;42:1650–5.

    Article  CAS  Google Scholar 

  45. Garg V, Muth AN, Ransom JF. Mutations in NOTCH1 cause aortic valve disease. Nature. 2005;437:270–4.

    Article  CAS  Google Scholar 

  46. Reamon-Buettner SM, Ciribilli Y, Inga A, Borlak J. A loss-of-function mutation in the binding domain of HAND1 predicts hypoplasia of the human hearts. Hum Mol Genet. 2008;17:1397–405.

    Article  CAS  Google Scholar 

  47. Michielon G, Di Donato RM, Pasquini L, Giannico S, Brancaccio G, Mazzera E, et al. Total anomalous pulmonary venous connection: long-term appraisal with evolving technical solutions. Eur J Cardiothorac Surg. 2002;22(2):184–91.

    Article  Google Scholar 

  48. Zubiate P, Kay JH. Surgical correction of anomalous pulmonary venous connection. Ann Surg. 1962;156(2):234–50.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem Sundar Venugopal MS, FRCS(CTh) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag London Ltd., part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Venugopal, P.S., Doshi, H. (2018). Congenital Cardio Thoracic Surgery. In: Losty, P., Flake, A., Rintala, R., Hutson, J., lwai, N. (eds) Rickham's Neonatal Surgery. Springer, London. https://doi.org/10.1007/978-1-4471-4721-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4721-3_28

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4720-6

  • Online ISBN: 978-1-4471-4721-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics