Embryology of Surgical Birth Defects

Chapter

Abstract

Today, the embryology of numerous congenital anomalies in humans is still a matter of speculation. This is due to a number of reasons which include:
  • Misconceptions and/or outdated theories concerning normal and abnormal embryology.

  • A shortage of study material (both normal and abnormal embryos).

  • A shortage of explanatory images of embryos and developing embryonic organs.

  • Difficulties in the interpretation of serial sections.

In recent years, a number of animal models have been established which helped to overcome the shortage of both, normal and abnormal embryos. However, a general agreement on when, why and how abnormal development takes place, still does not exist. As a result, many typical malformations are still not explained satisfactorily and pediatric surgeons of all specialties are still confused when they are confronted with the background of normal and abnormal embryologic development.

Keywords

Human birth defects Animal models Teratology Human embryology 

References

  1. 1.
    Haeckel E. Cited in Starck D: Embryologie. 3rd ed. Stuttgart, Germany: Thieme; 1975.Google Scholar
  2. 2.
    Schwalbe E. Die Morphologie der Missbildungen des Menschen und derTiere. 1. Teil Allgemeine Mißbildungslehre (Teratologie). Jena, Germany: Gustav Fischer; 1906. p. 143–4.Google Scholar
  3. 3.
    Gilbert SF. Developmental Biology. 7th ed. Sunderland, MA: Sinauer Associates; 2003. Chapter 23Google Scholar
  4. 4.
    McVay MR, Kokoska ER, Jackson RJ, Award SSDJB. The changing spectrum of intestinal malrotation: diagnosis and management. Am J Surg. 2007;194:712–7.CrossRefGoogle Scholar
  5. 5.
    Hamilton WJ, Boyd JD, Mossman HW. Human Embryology. 3rd ed. Baltimore: Lippincort, Williams & Wilkins; 1962. p. 294–9.Google Scholar
  6. 6.
    Broman I. Über die Entwicklung des Zwerchfells beim Menschen. Verh Anat Ges. 1902;16:9–17.Google Scholar
  7. 7.
    Stephens FD. Congenital Malformations of the Rectum, Anus, and Genitourinary Tract. Edinburgh, UK: Livingstone; 1963.Google Scholar
  8. 8.
    Steding G. The Anatomy of the Human Embryo—A Scanning Electron-Microscopic Atlas. Basel: Karger; 2009.Google Scholar
  9. 9.
    Kluth D, Steding G, Seidl W. The embryology of foregut malformations. J Pediatr Surg. 1987;22:389–93.CrossRefGoogle Scholar
  10. 10.
    Metzger R, Wachowiak R, Kluth D. Embryology of the early foregut. Semin Pediatr Surg. 2011;20:136–44.CrossRefGoogle Scholar
  11. 11.
    Fiegel HC, Rolle U, Metzger R, Gfroerer S, Kluth D. Embryology of the testicular descent. Semin Pediatr Surg. 2011;20:170–5.CrossRefGoogle Scholar
  12. 12.
    Metzger R, Metzger U, Fiegel HC, Kluth D. Embryology of the midgut. Semin Pediatr Surg. 2011;20:145–51.CrossRefGoogle Scholar
  13. 13.
    Kluth D, Fiegel HC, Metzger R. Embryology of the hindgut. Semin Pediatr Surg. 2011;2011:20152–60.Google Scholar
  14. 14.
    Kluth D, Hillen M, Lambrecht W. The principles of normal and abnormal hindgut development. J Pediatr Surg. 1995;30:1143–7.CrossRefGoogle Scholar
  15. 15.
    Goldin GV, Opperman LA. Induction of super-numerary tracheal buds and the stimulation of DNA synthesis in the embryonic chick lung and trachea by epidermal growth factor. J Embryol Exp Morphol. 1980;60:235–43.Google Scholar
  16. 16.
    Steding G. Ursachen der embryonalen Epithelverdickung. Acta Anat. 1967;68:37–67.CrossRefGoogle Scholar
  17. 17.
    Jacob HJ. Experimente zur Entstehung entodermaler Qrgananlagen. Untersuchungen an explantierten Hühnerembryonen. Anat Anzeiger. 1971;128:271–8.Google Scholar
  18. 18.
    Molenaar JC, Tibboel D. The pathogenesis of atresias of the small bowel and colon. S Air J Surg. 1982;20:87–95.Google Scholar
  19. 19.
    Schoenberg RA, Kluth D. Experimental small bowel obstruction in chick embryos: Effects on the developing enteric nervous system. J Pediatr Surg. 2002;37:735–40.CrossRefGoogle Scholar
  20. 20.
    Aktug T. Hosgör M Akgür FM Olguner M, Kargi A, Tibboel D. End-results of experimental gastroschisis created by abdominal wall versus umbilical cord defect. Pediatr Surg Int. 1997;12:583–6.CrossRefGoogle Scholar
  21. 21.
    Meijers JH, van der Sanden MP, Tibboel D, van der Kamp AW, Luider TM, Molenaar JC. Colonization characteristics of enteric neural crest cells: embryological aspects of Hirschsprung's disease. J Pediatr Surg. 1992;27:811–4.CrossRefGoogle Scholar
  22. 22.
    Lemez L. Sites for experimental production of tracheal and/or oesophageal malformations in 4-day-old chick embryos. Folia Morphol (Praha). 1980;28:52–5.Google Scholar
  23. 23.
    Harrison MR, Jester JA, Ross NA. Correction of congenital diaphragmatic hernia in utero. I. The model: intrathoracic balloon produces fatal pulmonary hypoplasia. Surgery. 1980 Jul;88(l):174–82.Google Scholar
  24. 24.
    Thompson DJ, Molello JA, Strebing RJ, Dyke IL. Teratogenicy of adriamycin and daunomycin in the rat and rabbit. Teratology. 1978;17:151–8.CrossRefGoogle Scholar
  25. 25.
    Diez-Pardo JA, Baoquan Q, Navarro C, Tovar JA. A new rodent experimental model of esophageal atresia and tracheoesophageal fistula: preliminary report. J Pediatr Surg. 1996;31:498–502.CrossRefGoogle Scholar
  26. 26.
    Beasley SW, Diez-Pardo J, Qi BQ, Tovar JA, Xia HM. The contribution of the adriamycin-induced rat model of the VATER association to our understanding of congenital abnormalities and their embryogenesis. Pediatr Surg M. 2000;16:465–72.CrossRefGoogle Scholar
  27. 27.
    Kubota Y, Shimotake T, Yanagihara J, Iwai N. Development of anorectal malformations using etretinate. J Pediatr Surg. 1998;33:127–9.CrossRefGoogle Scholar
  28. 28.
    Liu Y, Sugiyama F, Yagami K, Ohkawa H. Sharing of the same embryogenic pathway in anorectal malformations and anterior sacral myelomeningocele formation. Pediatr Surg Int. 2003;19:152–6.Google Scholar
  29. 29.
    Bitoh Y, Shimotake T, Sasaki Y, Iwai N. Development of the pelvic floor muscles of murine embryos with anorectal malformations. J Pediatr Surg. 2002;37:224–7.CrossRefGoogle Scholar
  30. 30.
    Hashimoto R, Nagaya M, Ishiguro Y, Inouye M, Aoyama H, Futaki S, Murata Y. Relationship of the fistulas to the rectum and genitourinary tract in mouse fetuses with high anorectal malformations induced by all-trans retinoic acid. Pediatr Surg Int. 2002;18:723–7.Google Scholar
  31. 31.
    Sasaki Y, Iwai N, Tsuda T, Kimura O. Sonic hedgehog and bone morphogenetic protein 4 expressions in the hindgut region of murine embryos with anorectal malformations. J Pediatr Surg. 2004;39:170–3.CrossRefGoogle Scholar
  32. 32.
    Arana J, Villanueva A, Guarch R, Aldazabal P, Barriola M. Anorectal atresia. An experimental model in the rat. Eur J Pediatr Surg. 2001;11:192–5.CrossRefGoogle Scholar
  33. 33.
    Qi BQ, Beasley SW, Frizelle FA. Clarification of the processes that lead to anorectal malformations in the ETU-induced rat model of imperforate anus. J Pediatr Surg. 2002;37:1305–12.CrossRefGoogle Scholar
  34. 34.
    Ambrose AM, Larson PS, Borcelleca JF, et al. Toxicological studies on 2,4-dichlorophenyl-P-nitrophenvl ether. Toxicol Appl Pharmacol. 1971;19:263–75.CrossRefGoogle Scholar
  35. 35.
    Tenbrinck R, Tibboel D, Gaillard JIJ, et al. Experimentally induced congenital diaphragmatic hernia in rats. J Pediatr Surg. 1990;25:426–9.CrossRefGoogle Scholar
  36. 36.
    Kluth D, Kangha R, Reich P, et al. Nitrofen-induced diaphragmatic hernia in rats—an animal model. J Pediatr Surg. 1990;25:850–4.CrossRefGoogle Scholar
  37. 37.
    Costlow RD, Manson JM. The heart and diaphragm: target organs in the neonatal death induced by nitrofen (2,4-dichloro-phenyl-P-nitrophenyl ether). Toxicology. 1981;20:209–27.CrossRefGoogle Scholar
  38. 38.
    Irtani L. Experimental study on embryogenesis of congenital diaphragmatic hernia. Anat Embiyol. 1984;169:133–9.CrossRefGoogle Scholar
  39. 39.
    Männer J, Kluth D. A chicken model to study the embryology of cloacal exstrophy. J Pediatr Surg. 2003;38:678–81.CrossRefGoogle Scholar
  40. 40.
    Männer J, Kluth D. The morphogenesis of the exstrophy-epispadias complex: a new concept based on observations made in early embryonic cases of cloacal exstrophy. Anat Embryol (Berl). 2005;210:51–7.CrossRefGoogle Scholar
  41. 41.
    Dunn LC, Gluecksohn-Schoenheimer S, Bryson V. A new mutation in the mouse affecting spinal column and urogenital system. J Hered. 1940;31(8):343.CrossRefGoogle Scholar
  42. 42.
    Kluth D, Lambrecht W, Reich P, et al. SD mice—an animal model for complex anorectal malformations. Eur J Pediatr Surg. 1991;1:183–8.CrossRefGoogle Scholar
  43. 43.
    van der Putte SCJ, Neeteson FA. The pathogenesis of hereditary congenital malformations in the pig. Acta Morphol Neerl Scand. 1984;22:17–40.Google Scholar
  44. 44.
    Lambrecht W, Lierse W. The internal sphincter in anorectal malformations: morphologic investigations in neonatal pigs. J Pediatr Surg. 1987;22:1160–8.CrossRefGoogle Scholar
  45. 45.
    Litingtung Y, Lei L, Westphal H, Chiang C. Sonic hedgehog is essential to foregut development. Nat Genet. 1998 Sep;20(l):58–61.CrossRefGoogle Scholar
  46. 46.
    Kim J, Kim P, Hui CC. The VACTERL association: lessons from the Sonic hedgehog pathway. Clin Genet. 2001;59:306–15.CrossRefGoogle Scholar
  47. 47.
    Mo R, Kim JH, Zhang J, Chiang C, Hui CC, Kim PC. Anorectal malformations caused by defects in sonic hedgehog signaling. Am J Pathol. 2001;159:765–74.CrossRefGoogle Scholar
  48. 48.
    Arsic D, Cameron V, Ellmers L, Quan QB, Keenan J, Beasley S. Adriamycin disruption of the Shh-Gli pathway is associated with abnormalities of foregut development. J Pediatr Surg. 2004;39:1747–53.CrossRefGoogle Scholar
  49. 49.
    Botham RA, Franco M, Reeder AL, Lopukhin A, Shiota K, Yamada S, Nichol PF. Formation of duodenal atresias in fibroblast growth factor receptor 2IIIb−/− mouse embryos occurs in the absence of an endodermal plug. J Pediatr Surg. 2012;47(7):1369.CrossRefGoogle Scholar
  50. 50.
    Booß D, Okmian L. Ein neues tierexperimentelles Modell für die Ösophagusforschung. Paper presented at the International Symposium on Oesophageal Atresia. Bremen. In:31th October and 1st; November 1974.Google Scholar
  51. 51.
    Komfälts A, Okmian L. JonssonN. Healing of circular oesophageal mucosal defect An experimental study in the piglet Z Kinderchir. 1973;13:184–97.Google Scholar
  52. 52.
    Petersen C, Biermanns D, Kuske M, Schakel K, Meyer-Junghanel L, Mildenberger H. New aspects in a murine model for extrahepatic biliary atresia. J Pediatr Surg. 1997;32:1190–5.CrossRefGoogle Scholar
  53. 53.
    Sydow H. Department of Anatomy and Embryology at the Georg-August-University of Göttingen, Germany, Personal Communication.Google Scholar
  54. 54.
    Rosenthal AH. Congenital atresia of the esophagus with tracheo esophageal fistula: report of eight cases. Arch Pathol. 1931;12:756–72.Google Scholar
  55. 55.
    Smith EL. The early development of the trachea and the esophagus in relation to atresia of the esophagus and tracheo-oesophageal fistula. Contrib Embyol Cameg Inst. 1957;36:41–57.Google Scholar
  56. 56.
    Zaw Tun HA. The tracheo-esophageal septum—fact or fantasy? Acta Anat. 1982;114:1–21.CrossRefGoogle Scholar
  57. 57.
    O’Rahilly R, Muller F. Chevalier Jackson Lecture. Respiratory and alimentary relations in staged human embryos. New embyrological data and congenital anomalies. Ann Otol Rhinol Laryngol. 1984;93:421–9.CrossRefGoogle Scholar
  58. 58.
    Merei JM, Hutson JM. Embryogenesis of tracheo esophageal anomalies: a review. Pediatr Surg Int. 2002;18:319–26.CrossRefGoogle Scholar
  59. 59.
    Kluth D, Habenicht R. The embryology of usual and unusual types of oesophageal atresia. Pediatr Surg Int. 1987;1:223–7.Google Scholar
  60. 60.
    The embryology of congenital diaphragmatic hernia. In: Puri P, editor. Congenital Diaphragmatic Hernia: Modem Problems in Pediatrics, vol. 24. Karger: Basel; 1989. p. 7–21.Google Scholar
  61. 61.
    Mayer S, Metzger R, Kluth D. The embryology of the diaphragm. Semin Pediatr Surg. 2011;20:161–9.CrossRefGoogle Scholar
  62. 62.
    Clugston RD, Zhang W, Greer JJ. Early development of the primordial mammalian diaphragm and cellular mechanisms of nitrofen-induced congenital diaphragmatic hernia. Birth Defects Res A Clin Mol Teratol. 2010;88:15–24.Google Scholar
  63. 63.
    Grosser O, Ortmann R. Grundriß der Entwicklungsgeschichte des Menschen. 7th ed. Berlin: Springer; 1970. p. 124–7.CrossRefGoogle Scholar
  64. 64.
    Gray SW, Skandalakis JE. Embryology for Surgeons. Philadelphia: Saunders; 1972. p. 359–85.Google Scholar
  65. 65.
    Holder RM, Ashcraft KW. Congenital diaphrag-matic hernia. In: Ravitch MM Welch KJ, Benson CD, Aberdeen E, Randolph JG, editors. Pediatric Surgery. 3rd edn. Vol. 1. (eds). Chicago: Year Book Medical Publishers; 1979. p. 432–45.Google Scholar
  66. 66.
    Bremer JL. The diaphragm and diaphragmatic hernia. Arch Pathol. 1943;36:539–49.Google Scholar
  67. 67.
    Gattone VH II, Morse DE. A scanning electron microscopic study on the pathogenesis of the posterolateral diaphragmatic hernia. J Submicrosc Cytol. 1982;14:483–90.Google Scholar
  68. 68.
    Kluth D, Tander B. v. Ekesparre M et al. Congenital diaphragmatic hernia: the impact of embryological studies. Pediatr Surg Int. 1995;10:16–22.CrossRefGoogle Scholar
  69. 69.
    Kluth D. Tenbrinck R v. Ekesparre M et al. The natural history of congenital diaphragmatic hernia in pulmonary hypoplasia in the embryo. J Pediatr Surg. 1993;28:456–63.CrossRefGoogle Scholar
  70. 70.
    Kluth D, Losty PD, Schnitzer JJ, Lambrecht W, Donahoe PK. Toward understanding the developmental anatomy of congenital diaphragmatic hernia. Clin Perinatol. 1996;23:655–69.CrossRefGoogle Scholar
  71. 71.
    Toumeux F. Sur le premiers developpements du cloaque du tubercle genitale et de l’anus chez Fembryon moutons, avec quelques remarques concemant le developpement des glandes prostatiques. J Anat Physiol. 1888;24:503–17.Google Scholar
  72. 72.
    DeVries P, Friedland GW. The staged sequential development of the anus and rectum in human embryos and fetuses. J Pediatr Surg. 1974;9:755–69.CrossRefGoogle Scholar
  73. 73.
    Retterer E. Sur l’origin et de revolution de la region ano-génitale des mammiferes. J Anat Physiol. 1890;26:126–216.Google Scholar
  74. 74.
    vd Putte SCJ. Normal and abnormal development of the anorectum. J Pediatr Surg. 1986;21:434–40.CrossRefGoogle Scholar
  75. 75.
    Kluth D, Lambrecht W. Current concepts in the embryology of anorectal malformations. Semin Pediatr Surg. 1997;6:180–6.Google Scholar
  76. 76.
    Felix W. Die Entwicklung der Harn- und Geschlechtsorgane. In: Keibel F, Mall FP, editors. Handbuch der Entwicklungsgeschichte des Menschen, vol. 2. Leipzig: Hirzel; 1911. p. 92–5.Google Scholar
  77. 77.
    Spaulding MH. Tire development of the external genitalia in the human embryo. Contrib Embryol Cameg. 1921;13:67–88.Google Scholar
  78. 78.
    Glenister TW. A correlation of the normal and abnormal development of the penile urethra and of the intraabdominal wall. J Urol. 1958;30:117–26.CrossRefGoogle Scholar
  79. 79.
    Gray SW, Skandalakis JE. Embryology for Surgeons. Philadelphia: Saunders; 1972. p. 595–631.Google Scholar
  80. 80.
    Kluth D, Lambrecht W, Reich P. Pathogenesis hypospadias—more questions than answers. J Pediatr Surg. 1988;23:1095–101.CrossRefGoogle Scholar
  81. 81.
    Kluth D, Fiegel HC, Geyer C, Metzger R. Embryology of the distal urethra and external genitals. Semin Pediatr Surg. 2011;20:176–87.CrossRefGoogle Scholar
  82. 82.
    Mall FP. Development of the human intestine and its position in the adult. Bull Johns Hopkins Hosp. 1898;9:197–208.Google Scholar
  83. 83.
    Frazer TE, Robbins RF. On the factors concerned in causing rotation of the intestine in man. J Anat Physiol. 1915;50:74–100.Google Scholar
  84. 84.
    Grob M. Über Lageanomalien des Magen-Darm-Traktes infolge Störungen der fetalen Darmdrehung. Schwabe: Basel; 1953.Google Scholar
  85. 85.
    Kluth D, Kaestner M, Tibboel D, Lambrecht W. Rotation of the gut: fact or fantasy? J Pediatr Surg. 1995;30:448–53.CrossRefGoogle Scholar
  86. 86.
    Kluth D, Jaeschke-Melli S, Fiegel H. The embryology of gut rotation. Semin Pediatr Surg. 2003;12(4):275–9.CrossRefGoogle Scholar
  87. 87.
    Heyns CF, Hutson JM. Historical review of theories on testicular descent. J Urol. 1995;153:754–67.CrossRefGoogle Scholar
  88. 88.
    Heyns CF. The gubernaculum during testicular descent in the human fetus. J Anat. 1987;153:93–112.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Hullinger RL, Wensing CJ. Descent of the testis in the fetal calf. A summary of anatomy and process Acta Anat (Basel). 1985;121:63–8.CrossRefGoogle Scholar
  90. 90.
    Wensing CJ. The embryology of testicular descent. Horm Res. 1988;30:144–52.CrossRefGoogle Scholar
  91. 91.
    Fiegel HC, Rolle U, Metzger R, Geyer C, Till H, Kluth D. The testicular descent in the rat: a scanning electron microscopic study. Pediatr Surg Int. 2010;26:643–7.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Laboratories of the Department of Pediatric SurgeryUniversity Hospital, University LeipzigLeipzigGermany
  2. 2.Department of Pediatric and Adolescent SurgeryParacelsus Medical University SalzburgSalzburgAustria

Personalised recommendations