Anaesthesia for Neonatal Surgery

Chapter

Abstract

Neonatal anaesthesia has evolved considerably over the last two decades. New agents and techniques have been widely adopted by paediatric anaesthetists, allowing a renewed emphasis on minimizing, or avoiding, periods of post-operative ventilation and sedation.

The newer drugs include remifentanil, an “ultra-short” acting opioid, the local anaesthetic agent levo-bupivacaine, the volatile anaesthetic agent, desflurane, and sugammadex, a relaxant reversal agent. There is also a better understanding of the pharmacology of the more established drugs.

Techniques include a variety of local and regional blocks, often aided by better needles and ultrasound imaging. Ultrasound guidance has also enabled more accurate and rapid vascular access. A number of devices and instruments have enlarged the repertoire of airway management techniques available to paediatric anaesthetists, including the laryngeal mask airway, micro-cuff endotracheal tubes and small fibre-optic bronchoscopes. Forced air warming devices have proved effective in preventing hypothermia.

Keywords

Anaesthesia Pharmacology Newborn surgery 

References

  1. 1.
    Lönnqvist PA. Management of the neonate: anesthetic considerations and postoperative management. Chapter 50. In: Bissonnette B, Dalens BJ, editors. Pediatric anesthesia: principles and practice. New York: McGraw Hill; 2002.Google Scholar
  2. 2.
    Brusseau R, McCann ME. Anaesthesia for urgent and emergency surgery. Early Hum Dev. 2010;86:703–14.Google Scholar
  3. 3.
    Anderson BJ, Holford NH. Understanding dosing: children are small adults, neonates are immature children. Arch Dis Child. 2013;98(9):737–44.Google Scholar
  4. 4.
    Stead AL, Nightingale DA. Anaesthesia for the newborn. Chapter 7. In: Rickham PP, Johnstone JH, editors. Neonatal surgery. Butterworths; 1969.Google Scholar
  5. 5.
    Rees GJ. Anaesthesia in the newborn. Br Med J. 1950;2:1419.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Bush GH, Stead AL. The use of d-Tubocurarine in neonatal anaesthesia. Br J Anaesth. 1962;34:721.Google Scholar
  7. 7.
    Anderson BJ, Allegaert K. The pharmacology of anaesthetics in the neonate. Best Pract Res Clin Anaesthesiol. 2010;24:419–31.Google Scholar
  8. 8.
    Rhodin MM. Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol. 2009;24:67–76.Google Scholar
  9. 9.
    Weibel ER. The pitfalls of power laws. Nature. 2002;417:131–2.Google Scholar
  10. 10.
    Kolotrones T, Savage V, Deeds EJ, Fontana W. Curvature in metabolic scaling. Nature. 2010;464:753–6.Google Scholar
  11. 11.
    White CR. There is no single p. Nature. 2010;464:691–2.Google Scholar
  12. 12.
    Neville KA, Becker ML, Goldman JL, Kearns GL. Developmental pharmacogenomics. Pediatric Anaesthesia. 2011;21:255–65.Google Scholar
  13. 13.
    Lerman J. Inhalational agents. In: Bissonnette B, Dalens BJ, editors. Pediatric anesthesia: principles and practice. Chapter 13. McGraw-Hill; 2002. pp 215–36.Google Scholar
  14. 14.
    Hatch DJ. New inhalational agents in paediatric anaesthesia. Br J Anaesth. 1999;83:42–9.Google Scholar
  15. 15.
    Wolf AR, Lawson RA, Dryden CM, Davies FW. Recovery after Desflurane anaesthesia in the infant: comparison with Isoflurane. Br J Anaesth. 1996;76:362–4.Google Scholar
  16. 16.
    Booker PD. Intravenous anaesthetics. In: Bissonnette B, Dalens BJ, editors. Pediatric anesthesia: principles and practice. Chapter 14. McGraw-Hill; 2002. pp 237–59.Google Scholar
  17. 17.
    Rigby Jones AE, Sneyd RJ. Propofol in children—what we know and what we do not know. Pediatr Anesth. 2011;21:247–54.Google Scholar
  18. 18.
    Welzling L, Kribs A, Eifinger F, et al. Propofol as an induction agent for endotracheal intubation can cause significant arterial hypotension in preterm neonates. Pediatr Anesth. 2010;20:605–11.Google Scholar
  19. 19.
    Nauta M, Onland W, De Jaegere A. Correspondence. Pediatr Anesth. 2011;21:711–2.Google Scholar
  20. 20.
    Wolf AR, Potter F. Propofol infusion syndrome. When does an anaesthetic tool become an intensive care liability? Paediatr Anesth. 2004;14:435–8.Google Scholar
  21. 21.
    Bray RJ. The propofol infusion syndrome in infants and children: can we predict the risk? Current Opin Anaesthesiol. 2002;13:339–42.Google Scholar
  22. 22.
    Kill C, Leomhardt A, Wulf H. Lactic acidosis after short term infusion of propofol for anesthesia in a child with osteogenesis imperfecta. Paediatr Anaesth. 2003;13:823–6.Google Scholar
  23. 23.
    Roelofse JA. The evolution of ketamine applications in children. Pediatr Anesth. 2010;20:240–5.Google Scholar
  24. 24.
    Anderson BJ, Larsson P. A maturation model for midazolam clearance. Paediatr Anaesth. 2011;21:302–8.Google Scholar
  25. 25.
    Tobin JR. Paradoxical effects of midazolam in the very young. Anesthesiology. 2008;108:6–7.Google Scholar
  26. 26.
    Durrmeyer X, Vutskits L, Anand KJS, Rimsberger PC. Use of analgesic and sedative drugs in the NICU: integrating clinical trials and labarotary data. Pediatr Res. 2010;67(2):117–27.Google Scholar
  27. 27.
    Potts AL, Warman GR, Anderson BJ. Dexnedetomidine disposition in children: a population analysis. Pedriatr Anesth. 2008;18(8):722–30.Google Scholar
  28. 28.
    Tobias JD. Dexmedetomidine: applications in pediatric critical care and pediatric anesthesiology. Pediatr Crit Care Med. 2007;8:115–31.Google Scholar
  29. 29.
    Yuen VMY. Dexmedetomidine: perioperative applications in children. Pediatr Anesth. 2010;20:256–64.Google Scholar
  30. 30.
    Meretoja OA. Neuromuscular block and current treatment strategies for its reversal in children. Pediatr Anesth. 2010;20:591–604.Google Scholar
  31. 31.
    Meakin GH, McKiernan EP, Morris P, Baker RD. Dose–response curves for suxamethonium in neonates, infants and children. Br J Anaesth. 1989;62:655–8.Google Scholar
  32. 32.
    Rawicz M, Brandom BW, Wolf A. Pro-con debate. The place of suxamethonium in pediatric anesthesia. Pediatr Anesth. 2009;19:561–70.Google Scholar
  33. 33.
    Fisher DM, Cronnelly R, Miller RD, et al. The neuromuscular pharmacology of neostigmine in infants and children. Anesthesiology. 1983;59:220–5.Google Scholar
  34. 34.
    Plaud B, Meretoja O, Hofmockel R, et al. Reversal of rocuronium- induced neuromuscular blockade with sugammadex in pediatric and adult surgical patients. Anesthesiology. 2009;110:284–94.Google Scholar
  35. 35.
    Howard R, Carter B, Curry J, et al. Analgesia review. Pediatr Anesth. 2008;18(Suppl 1):64–78.Google Scholar
  36. 36.
    Anand KJ, Hickey PR. Pain and its effects in the human neonate and fetus. N Engl J Med. 1987;317:1321–9.Google Scholar
  37. 37.
    Kart T, Christup LL, Rasmussen M. Recommended use of morphine in neonates, infants and children, based on a literature review: part 1—pharmacokinetics. Paediatric Anaesthesia 1997;7:5–11. Part 2—clinical use. Pediatr Anesth. 1997;7:93–101.Google Scholar
  38. 38.
    Anand KJ, Anderson BJ, Holford NH, et al. Morphine pharmacokinetics and pharmacodynamics in preterm and term neonates: secondary results from the NEOPAIN trial. Br J Anaesth. 2008;101:680–9.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Tibboel D, Anand KJ, van den Anker JN. The pharmacological treatment of neonatal pain. Semin Fetal Neonatal Med. 2005;10:195–205.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Thewissen L, Allegaert K. Analgo-sedation in neonates: do we still need additional tools after 30 years of clinical research? Arch Dis Child Educ Pract Ed. 2011;96:112–8.Google Scholar
  41. 41.
    Yaster M. The dose response of fentanyl in neonatal anaesthesia. Anesthesiology. 1987;66:433–5.Google Scholar
  42. 42.
    Hickey PR, Hansen DD, Wessel DL, et al. Blunting of stress responses in the pulmonary circulation of infants by fentanyl. Anesth Analg. 1985;64:1137–42.Google Scholar
  43. 43.
    Santeiro ML, Christie J, Stromquist C, et al. Pharmacokinetics of continuous infusion fentanyl in newborns. J Perinatol. 1997;17:135–9.Google Scholar
  44. 44.
    Saarenmaa E, Huttunen P, Leppaluoto J, et al. Advantages of fentanyl over morphine in analgesia for ventilated newborn infants after birth: a randomized trial. J Pediatr. 1999;134:144–50.Google Scholar
  45. 45.
    Rigby-Jones AE, Priston MJ, Sneyd JR, et al. Remifentanil-midazolam sedation for paediatric patients receiving mechanical ventilation after cardiac surgery. Br J Anaesth. 2007;99:252–61.Google Scholar
  46. 46.
    Sammartino M, Garra R, Sbaragliara F, et al. Remifentanil in children. Pediatr Anesth. 2010;20:246–55.Google Scholar
  47. 47.
    Michel F, Lando A, Aubry C, et al. Experience with remifentanil-sevoflurane balanced anesthesia for abdominal surgery in neonates and children less than 2 years. Pediatr Anesth. 2008;18:532–8.Google Scholar
  48. 48.
    Sammartino M, Garra F, De Riso M, et al. Experience of remifentanil in extremely low-birth-weight babies undergoing laparotomy. Pediatr Neonatol. 2011;52(3):176–9.Google Scholar
  49. 49.
    Silva YP, Gomez RS, Marcatto JO, et al. Morphine versus remifentanil for intubating preterm neonates. Arch Dis Child Fetal Neonatal Ed. 2007;92:293–4.Google Scholar
  50. 50.
    Welzing L, Oberthuer A, Junghaenel S, et al. Remifentanil/midazolam versus fentanyl/midazolam for analgesia and sedation of mechanically ventilated neonates and young infants: a randomized controlled trial. Intensive Care Med. 2012;38(6):1017–24.Google Scholar
  51. 51.
    Quiding H, Olsson GL, Boreus LO, Bondesson U. Infants and young children metabolise codeine to morphine. A study after single and repeated rectal administration. Br J Clin Pharmacol. 1992;33:45–9.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Tremlett M, Anderson BJ, Wolf A. Pro-con debate: is codeine a drug that still has a useful role in paediatric practice? Pediatr Anesth. 2010;20:183–94.Google Scholar
  53. 53.
    Allegaert K, van den Anker JN, de Hoon JN, et al. Covariates of tramadol disposition in the first months of life. Br J Anaesth. 2008;100:525–32.Google Scholar
  54. 54.
    Alencar AJ, Sanudo A, Sampaio VM. Efficacy of tramadol versus fentanyl for postoperative analgesia in neonates. Arch Dis Child Fetal Neonatal Ed. 2012;97(1):F24–9.Google Scholar
  55. 55.
    Van den Anker JN, Tibboel D. Pain relief in neonates: when to use intravenous paracetamol. Arch Dis Child. 2011;96(6):573–4.Google Scholar
  56. 56.
    Allegaert K, Palmer GM, Anderson BJ. The pharmacokinetics of intravenous paracetamol in neonates: size matters most. Arch Dis Child. 2011;96(6):575–80.Google Scholar
  57. 57.
    Bartocci M, Lundeberg S. Intravenous paracetamol: the ‘Stockholm protocol’ for postoperative analgesia of term and preterm neonates. Paediatr Anaesth. 2007;17:1120–1.Google Scholar
  58. 58.
    Lerman J, Strong HA, Ledez KM. Effects of age on the serum concentration of alpha-1-acid glycoprotein and the binding of lidocaine in pediatrics. Clin Pharmacol Ther. 1989;46:219.Google Scholar
  59. 59.
    Mazoit JX, Dalens BJ. Pharmacokinetics of local anaesthetics in infants and children. Clin Pharm. 2004;43:17–32.Google Scholar
  60. 60.
    Frawley G, Ingelmo P, Smith K. Relative potencies of bupivacaine, levobupivacaine and ropivacaine for neonatal spinal anaesthesia. Br J Anesth. 2009;103:731–8.Google Scholar
  61. 61.
    Bosenburg AT, Thomas J, Cronje L, et al. Pharmocokinetics and efficacy of ropivacaine for continuous epidural infusions in neonates and infants. Pediatr Anesth. 2005;15:739–49.Google Scholar
  62. 62.
    Lehr VT, Taddio A. Topical anaesthesia in neonates: clinical practices and practical considerations. Semin Perinatol. 2007;31(5):323–9.Google Scholar
  63. 63.
    Kapellou O. Blood sampling in infants (reducing pain and morbidity). Clin Evid (Online). 2011;5:1–21.Google Scholar
  64. 64.
    Lönnqvist PA. Regional anaesthesia and analgesia in the neonate. Best Pract Res Clin Anaesthesiol. 2010;24:309–21.Google Scholar
  65. 65.
    Wolf AR, Eyres RL, Laussen PC, et al. Effect of extradural analgesia on stress responses to abdominal surgery in infants. Br J Anaesth. 1993;70(6):654–60.Google Scholar
  66. 66.
    Giaufré E, Dalens B, Gombert A. Epidemiology and morbidity of regional anesthesia in children: a one-year prospective survey of the French-Language Society of Pediatric Anesthesiologists. Anesth Analg. 1996;83(5):904–12.Google Scholar
  67. 67.
    Ecoffey C, Lacroix F, Giaufre E, et al. Epidemiology and morbidity of regional anesthesia in children: a follow-up one-year prospective survey of the French-Language Society of Pediatric Anesthesiologists (ADARPEF). Pediatr Anesth. 2010;20:1061–9.Google Scholar
  68. 68.
    Llewellyn N, Moriarty A. The national pediatric epidural audit. Paediatr Anaesth. 2007;17(6):520–33.Google Scholar
  69. 69.
    Bösenberg AT, Jöhr M, Wolf AR. Pro-con debate: the use of regional vs systemic analgesia for neonatal surgery. Pediatr Anesth. 2011;21(12):1247–58.Google Scholar
  70. 70.
    Giaufre E, Busoni P. Techniques—central blocks—single shot caudal block. Continuous caudal block. Chapter 11. In: Saint-Maurice C, Schulte Steinberg O, editors. Regional anaesthesia in children. Medi Globe;1990.Google Scholar
  71. 71.
    Roberts SA, Guruswamy V, Galvez I. Caudal injectate can be reliably imaged using portable ultrasound—a preliminary study. Pediatr Anesth. 2005;15(11):948–52.Google Scholar
  72. 72.
    Jöhr M, Seiler SJ, Berger TM. Caudal anesthesia with ropivacaine in an awake 1,090gm baby. Anesthesiology. 2000;93(2):593.Google Scholar
  73. 73.
    Hoelzle M, Weiss M, Dillier C, Gerber A. Comparison of awake spinal with awaake caudal anesthesia in preterm and ex-preterm infants for herniotomy. Pediatr Anesth. 2010;20(7):620–4.Google Scholar
  74. 74.
    Chawathe MS, et al. Detection of epidural catheters with ultrasound in children. Paediatr Anaesth. 2003;13:681–4.Google Scholar
  75. 75.
    Roberts SA, Galvez I. Ultrasound assessment of caudal catheters in infants. Paediatr Anaesth. 2005;15:429–32.Google Scholar
  76. 76.
    Bösenberg AT. Epidural analgesia for major neonatal surgery. Pediatr Anesth. 1998;8(6):479–83.Google Scholar
  77. 77.
    Hoehn T, Jetzek-Zader M, Blohm M, Mayatepek E. Early peristalsis following epidural analgesia during abdominal surgery in an extremely low birth weight infant. Pediatr Anesth. 2007;17(2):176–9.Google Scholar
  78. 78.
    Willschke H, Bosenberg A, Marhofer P, et al. Epidural catheter placement in neonates: sonoanatomy and feasibility of ultrasonographic guidance in term and preterm neonates. Reg Anesth Pain Med. 2007;32:34–40.Google Scholar
  79. 79.
    McDonnell JG, O’Donnell BD, Farrell T, et al. Transversus abdominis plane block: a cadaveric and radiological evaluation. Reg Anesth Pain Med. 2007;32:399–404.Google Scholar
  80. 80.
    Fredrickson MJ, Seal P. Ultrasound-guided transversus abdominis plane block for neonatal abdominal surgery. Anaesth Intensive Care. 2009;37:469–72.Google Scholar
  81. 81.
    Bielsky A, Efrat R, Suresh S. Postoperative analgesia in neonates after major abdominal surgery: ‘TAP’ our way to success! Pediatr Anesth. 2009;19(5):541–2.Google Scholar
  82. 82.
    Masters OW, Thies KC. TAP block and low-dose NCA for major upper abdominal surgery. Pediatr Anesth. 2011;21(1):87–8.Google Scholar
  83. 83.
    Ferguson S, Thomas V, Lewis I. The rectus sheath block in paediatric anaesthesia: new indications for an old technique? Pediatr Anesth. 1996;6(6):463–6.Google Scholar
  84. 84.
    Willschke H, Marhofer P, Bosenberg A, et al. Ultrasonography for ilioinguinal/iliohypogastric nerve blocks in children. Br J Anesth. 2005;95:225–30.Google Scholar
  85. 85.
    Frawley G, Ingelmo P. Spinal anaesthesia in the neonate. Best Pract Res Clin Anaesthesiol. 2010;24:337–51.Google Scholar
  86. 86.
    Craven PD, Badawi N, Henderson-Smart DJ, O’Brien M. Regional (spinal, epidural, caudal) versus general anaesthesia in preterm infants undergoing inguinal herniorrhaphy in early infancy. Cochrane Database Syst Rev. 2003;3:CD003669.Google Scholar
  87. 87.
    William JM, Stoddart PA, Williams SA, Wolf AR. Postoperative recovery after inguinal herniotomy in ex-premature infants: comparison between sevoflurane and spinal anaesthesia. Br J Anaesth. 2001;86(3):366–71.Google Scholar
  88. 88.
    Sale SM, Read JA, Stoddart PA, Wolf AR. Prospective comparison of sevoflurane and desflurane in formerly premature infants undergoing inguinal herniotomy. Br J Anaesth. 2006;96(6):774–8.Google Scholar
  89. 89.
    Williams RK, Adams DC, Aladjem EV, et al. The safety and efficacy of spinal anesthesia for surgery in infants: the Vermont Infant Spinal Registry. Anesth Analg. 2006;102(1):67–71.Google Scholar
  90. 90.
    Shenkman Z, Hoppenstein D, Litmanowitz I, et al. Spinal anesthesia in 62 premature, former-premature or young infants—technical aspects and pitfalls. Can J Anaesth. 2002;49(3):262–9.Google Scholar
  91. 91.
    Somri M, Gaitini L, Vaida S, et al. Postoperative outcome in high-risk infants undergoing herniorrhaphy: comparison between spinal and general anaesthesia. Anaesthesia. 1998;53(8):762–6.Google Scholar
  92. 92.
    Hermanns H, Stevens MF, Werdehausen R, et al. Sedation during spinal anaesthesia in infants. Br J Anaesth. 2006;97(3):380–4.Google Scholar
  93. 93.
    Easley RB, George R, Connors D, Tobias JD. Aseptic meningitis after spinal anesthesia in an infant. Anesthesiology. 1999;91(1):305–7.Google Scholar
  94. 94.
    Lonnqvist PA, Hildingsson U. The caudal boundary of the thoracic paravertebral space. A study human cadavers. Anaesthesia. 1992;47(12):1051.Google Scholar
  95. 95.
    Lönnqvist PA. Continuous paravertebral block in children: initial experience. Anaesthesia. 1992;47:607–9.Google Scholar
  96. 96.
    Eng J, Sabanathan S. Continuous paravertebral block for post-thoracotomy analgesia in children. J Pediatr Surg. 1992;7:556–7.Google Scholar
  97. 97.
    Bhalla T, Sawardekar A, Dewhirst E, et al. Ultrasound-guided trunk and core blocks in infants and children. J Anesth. 2013;27(1):109–23.Google Scholar
  98. 98.
    Karmakar MK, Booker PD, Franks R, et al. Continuous extrapleural paravertebral infusion of bupivacaine for post-thoracotomy analgesia in young infants. Br J Anaesth. 1996;76:811–5.Google Scholar
  99. 99.
    Berta E, Spanhel J, Smakal O, et al. Single-shot paravertebral blockade for analgesia after urologic surgery in children. Eur J Anaesthesiol. 2007;24(suppl 39):138 (abstract).Google Scholar
  100. 100.
    Lönnqvist PA. Pre-emptive analgesia with thoracic paravertebral blockade? Br J Anaesth. 2005;95:727–8.Google Scholar
  101. 101.
    Detaille T, Pirotte T, Veyckemans F. Vascular access in the neonate. Best Pract Res Clin Anaesthesiol. 2010;24:403–18.Google Scholar
  102. 102.
    Askegard-Giesmann JR, Caniano DA, Kenney BD. Rare but serious complications of central line insertion. Semin Paediatr Surg. 2009;18:73–83.Google Scholar
  103. 103.
    Lerman J, Heard C, Steward DJ. Neonatal tracheal intubation: an imbroglio unresolved. Pediatr Anesth. 2010;20:585–90.Google Scholar
  104. 104.
    Weber T, Salvi N, Orliaguet WA. Pro-con debate. Cuffed vs non-cuffed endotracheal tubes for pediatric anesthesia. Pediatr Anesth. 2009;19(suppl 10):46–54.Google Scholar
  105. 105.
    Holzki J, Laschat M, Puder C. Iatrogenic damage to the pediatric airway. Mechanisms and scar development. Pediatr Anesth. 2009;19(suppl 1):131–46.Google Scholar
  106. 106.
    Walker RWM, Ellwood J. The management of difficult intubation in children. Pediatr Anesth. 2009;19(suppl 1):77–87.Google Scholar
  107. 107.
    Weiss M, Gerber AC. Rapid sequence induction in children—it’s not a matter of time. Pediatr Anesth. 2008;18:97–9.Google Scholar
  108. 108.
    Habre W. Neonatal ventilation. Best Pract Res Clin Anaesthesiol. 2010;24:353–64.Google Scholar
  109. 109.
    Froese AB, Kinsella JP. High-frequency oscillatory ventilation: lessons from the neonatal/pediatric experience. Crit Care Med. 2005;33(Suppl):S115–21.Google Scholar
  110. 110.
    Mutch WA, Harms S, Ruth GM, et al. Biologically variable or naturally noisy mechanical ventilation recruits atelactatic lung. Am J Respir Crit Care Med. 2000;162:319–23.Google Scholar
  111. 111.
    Graham MR, Goertzen AL, Girling LG, et al. Quantitive computed tomography in porcine lung injury with variable versus conventional ventilation: recruitment and surfactant replacement. Crit Care Med. 2011;39:1721–30.Google Scholar
  112. 112.
    Reynolds L, Beckmann J, Kurz A. Perioperative complications of hypothermia. Best Pract Res Clin Anaesthesiol. 2008;22:645–57.Google Scholar
  113. 113.
    Buisson P, Bach V, Elabbassi EB, et al. Assessment of the efficiency of warming devices during neonatal surgery. Eur J Appl Physiol. 2004;92:694–7.Google Scholar
  114. 114.
    Murat I, Humblot A, Girault L, Piana F. Neonatal fluid management. Best Pract Res Clin Anaesthesiol. 2010;24:365–74.Google Scholar
  115. 115.
    Boluyt N, Bollen C, Bos AP, et al. Fluid resuscitation in neonatal and hypovolaemic shock: a Dutch Pediatric Society evidence-based clinical practice guideline. Intensive Care Med. 2006;32:995–1003.Google Scholar
  116. 116.
    Mann C, Held U, Herzog S, Baenziger O. Impact of normal saline infusion on postoperative metabolic acidosis. Pediatr Anesth. 2009;19(11):1070–7.Google Scholar
  117. 117.
    Von Lindern JS, Brand A. The use of blood products in perinatal medicine. Semin Fetal Neonatal Med. 2008;13:272–81.Google Scholar
  118. 118.
    Pierro A, Eaton S. Metabolism and nutrition in the surgical neonate. Semin Pediatr Surg. 2008;17:276–84.Google Scholar
  119. 119.
    Lindley KJ, Spitz L. Surgery of persistent hyperinsulinaemic hypoglycaemia. Semin Neonatol. 2003;8:259–65.Google Scholar
  120. 120.
    Kelly A, Liddell M, Davis C. The nursing care of the surgical neonate. Semin Pediatr Surg. 2008;17:290–6.Google Scholar
  121. 121.
    Boloker J, Bareman DA, Wung JT, Stolar CJ. Congenital diaphragmatic hernia in 120 infants treated consecutively with permissive hypercapnia/spontaneous respiration/elective repair. J Pediatr Surg. 2002;37:357–66.Google Scholar
  122. 122.
    Downard CD. Congenital diaphragmatic hernia: an ongoing challenge. Curr Opin Pediatr. 2008;20:300–4.Google Scholar
  123. 123.
    Bosenberg AT, Brown RA. Management of congenital diaphragmatic hernia. Curr Opin Anesthesiol. 2008;21:323–31.Google Scholar
  124. 124.
    Miggliazza L, Bellan C, Alberti D, et al. Retrospective study of 111 cases of CDH treated with early HFOV and presurgical stabilization. J Pediatr Surg. 2007;42:1526–32.Google Scholar
  125. 125.
    Jani JC, Nicholaides KH, Gratacos E, et al. Severe diaphragmatic hernia treated by fetal endoscopic tracheal occlusion. Ultrasound Obstet Gynecol. 2009;34:304–10.Google Scholar
  126. 126.
    Broemling N, Campbell F. Anesthetic management of congenital tracheoesophageal fistula. Pediatr Anesth. 2011;21(11):1092–9.Google Scholar
  127. 127.
    Knottenbelt G, Skinner A, Seefelder C. Tracheo-oesophageal fistula (TOF) and oesophageal atresia (OA). Best Pract Res Clin Anaesthesiol. 2010;24:387–401.Google Scholar
  128. 128.
    Holzki J. Brochoscopic findings and treatment in congenital tracheo-oesophageal fistula. Paediatr Anaesth. 1992;2:297–303.Google Scholar
  129. 129.
    Alabbab SI, Shaw K, Puligandla PS, et al. The pitfalls of endotracheal intubation beyond the fistula in babies with type C esophageal atresia. Semin Pediatr Surg. 2009;18:116–8.Google Scholar
  130. 130.
    Atzori P, Iacobelli BD, Bottero S, et al. Pre-operative tracheoscopy in newborns with esophageal atresia: does it matter? J Pediatr Surg. 2006;41:1054–7.Google Scholar
  131. 131.
    Deanovic D, Gerber AS, Dodge-Khatami A, et al. Tracheoscopy assisted repair of tracheo-oesophageal fistula (TARTEF): a 10-year experience. Pediatr Anesth. 2007;17:557–62.Google Scholar
  132. 132.
    Cohen DE, McCloskey JJ, Motas D, et al. Fluoroscopic-assisted endobronchial intubation for single-lung ventilation in infants. Pediatr Anesth. 2011;21:681–4.Google Scholar
  133. 133.
    Tobias JD. Anaesthesia for neonatal thoracic surgery. Best Pract Res Clin Anaesthesiol. 2004;18(2):303–20.Google Scholar
  134. 134.
    Rothenberg SS, Kuenzler KA, Middlesworth W, et al. Thoracoscopic lobectomy in infants less than 10 kg with penatally diagnosed cystic lung disease. J Laparoendosc Adv Surg Tech A. 2011;21(2):181–4.Google Scholar
  135. 135.
    Guruswamy V, Roberts S, Arnold P, Potter F. Anaesthetic management of a neonate with congenital cyst adenoid malformation. Br J Anaesth. 2005;95(2):240–2.Google Scholar
  136. 136.
    Raghavan M, Montgomerie J. Anaesthetic management of gastroschisis—a review of our practice over the past 5 years. Pediatr Anesth. 2008;18:731–5.Google Scholar
  137. 137.
    Lönnqvist PA. Major abdominal surgery of the neonate: anaesthetic considerations. Best Pract Res Clin Anaesthesiol. 2004;18:321–42.Google Scholar
  138. 138.
    Walker A, Stokes M, Moriarty A. Anesthesia for major general surgery in neonates with complex heart defects. Pediatr Anesth. 2009;19:119–25.Google Scholar
  139. 139.
    Bhutani VK. Extra-uterine uterine adaptations in the newborn. Semin Neonatol. 1997;2:1–12.Google Scholar
  140. 140.
    Friesen RH, Williams GD. Anesthetic management of children with pulmonary arterial hypertension. Pediatr Anesth. 2008;18:208–16.Google Scholar
  141. 141.
    Stayer SA, Liu Y. Pulmonary hypertension of the newborn. Best Pract Res Clin Anaesthesiol. 2010;24:375–86.Google Scholar
  142. 142.
    Boat AC, Sadhasivam S, Loepke AW, Kurth CD. Outcome for the extremely premature neonate: how far do we push the edge? Pediatr Anesth. 2011;21:765–70.Google Scholar
  143. 143.
    Kinouchi K. Anaesthetic considerations for the management of very low and extremely low birthweight infants. Best Pract Res Clin Anaesthesiol. 2004;18(2):273–90.Google Scholar
  144. 144.
    Berman L, Moss RL. Necrotising enterocolitis: an update. Semin Fetal Neonatal Med. 2011;16:145–50.Google Scholar
  145. 145.
    Pierro A, Hall N. Surgical treatment of infants with NEC. Semin Neonatol. 2003;8:223–32.Google Scholar
  146. 146.
    Ponsky TA, Rothenberg SS. Minimally invasive surgery in infants less than 5 kg: experience of 649 cases. Surg Endosc. 2008;22:2214–9.Google Scholar
  147. 147.
    Kalfa N, Allal H, Raux O, et al. Tolerance of laparoscopy and thoracoscopy in neonates. Pediatrics. 2005;116(6):e785–91.Google Scholar
  148. 148.
    Kalfa N, Allal H, Raux O, et al. Multicentric assessment of the safety of neonatal videosurgery. Surg Endosc. 2006;2:303–8.Google Scholar
  149. 149.
    Sinha CK, Paramalingham S, Patel S, et al. Feasibility of complex minimally invasive surgery in neonates. Pediatr Surg Int. 2009;25(3):217–21.Google Scholar
  150. 150.
    Sanders RD, Hassell J, Davidson AJ, et al. Impact of anaesthetics an surgery on neurodevelopment: an update. Br J Anaesth. 2013;110(Suppl 1):i53–72.PubMedPubMedCentralGoogle Scholar
  151. 151.
    Blaylock M, Engelhardt T, Bissonnette B. Fundamentals of neuronal apoptosis relevant to pediatric anaesthesia. Pediatr Anesth. 2010;20:383–95.Google Scholar
  152. 152.
    Davidson AW. Anesthesia and neurotoxicity to the developing brain: the clinical relevance. Pediatr Anesth. 2011;21:716–21.Google Scholar
  153. 153.
    Hansen TG, Pedersen JK, Henneberg SW, et al. Academic performance after inguinal hernia repair in infancy: a nationwide cohort study. Anesthesiology. 2011;114(5):1076–85.Google Scholar
  154. 154.
    Guyatt GH, Oxman AD, Vist GE, et al. GRADE: what is “quality of evidence” and why is it important to clinicians? Br Med J. 2008;336:995–8.Google Scholar
  155. 155.
    Schünemann HJ, Jaeschke R, Cook DH, et al. An official ATS statement. Grading the quality of evidence and strength of recommendations in ATS guidelines and recommendations. Am J Respir Crit Care Med. 2006;174:605–14.Google Scholar
  156. 156.
    Deans KJ, Minneci PC, Suffredini AF, et al. Randomisation in clinical trials of titrated therapies: unintended consequences of using fixed treatment protocols. Crit Care Med. 2007;35:1509–16.Google Scholar
  157. 157.
    Tobin JR. Use of pharmaceuticals ‘Off-Label’ in the neonate. Best Pract Res Clin Anaesthesiol. 2010;24:451–60.Google Scholar
  158. 158.
    Chiswick M. Infants of borderline viability: ethical and clinical considerations. Semin Fetal Neonatal Med. 2008;13:8–15.Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jackson Rees Department of Paediatric AnaesthesiaAlder Hey Children’s NHS Foundation TrustLiverpoolUK

Personalised recommendations