Skip to main content

Parallel Wrists for Enhancing Grasping Performance

  • Chapter
  • First Online:
Grasping in Robotics

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 10))

Abstract

Good grasping and effective manipulation heavily depend on the performance of robotic wrists such as, e.g., the number of degrees of freedom, the kind of motion that is generated, the dexterity of the operations, the stiffness, and the size of the mechanical structure; such characteristics heavily affect kinematic and dynamic performance of the manipulation and can lead to a successful grasp or to an unexpected failure, if not taken into consideration since the early design steps. This chapter, after an introduction recalling the wrist structure of the industrial manipulators, focuses on parallel kinematics wrists, a rather new kind of mechanical architecture that has not found so far relevant industrial applications but shows very promising features, such as mechanical stiffness, high accuracy, lightweight construction, and so on. After presenting a powerful kinematical tool for the synthesis of parallel kinematics machines (SPM), which is based on Lie algebra, the design of a novel spherical wrist is discussed in details. A prototype machine, actuated by three brushless linear motors, has been built with the aim of obtaining good static and dynamic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Charles SK, Hogan N (2010) Dynamics of wrist rotations. J Biomech 44:614–621. doi:10.1016/j.jbiomech.2010.11.016

    Article  Google Scholar 

  2. Pennestrì E (1991) On the kinematic analysis of geared robotic wrists. Meccanica 26:155–160. doi:10.1007/BF00429883

    Article  Google Scholar 

  3. Rosheim ME (1989) Robot wrist actuators. John Wiley & Sons Inc, New York

    Google Scholar 

  4. Saravanan R, Ramabalan S, Godwin Raja Ebenezer N, Dharmaraja C (2009) Evolutionary multi criteria design optimization of robot grippers. Appl Soft Comput 9:159–172. doi:10.1016/j.asoc.2008.04.001

    Article  Google Scholar 

  5. Schäfer C, Dillmann R (2001) Kinematic design of a humanoid robot wrist. J Robot Syst 18:747–754. doi:10.1002/rob.8113

    Article  MATH  Google Scholar 

  6. Fichter EF, Kerr DR, Rees-Jones J (2009) The Gough–Stewart platform parallel manipulator: a retrospective appreciation. Proc Inst Mech Eng C: J Mech Eng Sci 223:243–281. doi:10.1243/09544062JMES1137

    Article  Google Scholar 

  7. Di Gregorio R (2002) A new family of spherical parallel manipulators. Robotica 20:353–358. doi:10.1017/S0263574702004174

    Google Scholar 

  8. Bürger T, Laible U, Pritschow G (2001) Design and test of a safe numerical control for robotic surgery. CIRP Ann Manuf Technol 50:295–298. doi:10.1016/S0007-8506(07)62125-8

    Article  Google Scholar 

  9. Takaiwa M, Noritsugu T (2005) Development of wrist rehabilitation equipment using pneumatic parallel manipulator. In: Proceedings of the IEEE international conference of robotics automation, Barcelona, Spain, pp 2302–2307. doi:10.1109/ROBOT.2005.1570456

  10. Arata J, Kondo H, Ikedo N, Fujimoto H (2011) Haptic device using a newly developed redundant parallel mechanism. IEEE Trans Robotics 27:201–214. doi:10.1109/TRO.2010.2098272

    Article  Google Scholar 

  11. Unal R, Patoglu V (2008) Optimal dimensional synthesis of force feedback lower arm exoskeletons. In: Proceedings of the IEEE/RAS-EMBS international conference on biomedical robotics and biomechatron, Scottsdale, USA, pp 329–334. doi:10.1109/BIOROB.2008.4762871

  12. Saltaren RJ, Sabater JM, Yime E, Azorin JM, Aracil R, Garcia N (2007) Performance evaluation of spherical parallel platforms for humanoid robots. Robotica 25:257–267. doi:10.1017/S0263574706003043

    Article  Google Scholar 

  13. Asada H, Granito C (1985) Kinematic and static characterization of wrist joints and their optimal design. In: Proceedings of the IEEE international conference on robotics and automation, St Louis, USA, pp 244–250. doi:10.1109/ROBOT.1985.1087324

  14. Gosselin CM, Angeles J (1989) The optimum kinematic design of a spherical three-degree-of-freedom parallel manipulator. ASME J Mech Trans and Automat Des 111:202–207

    Article  Google Scholar 

  15. Alizade RI, Tagiyev NR, Duffy J (1994) A forward and reverse displacement analysis of an in-parallel spherical manipulator. Mech Mach Theory 29:125–137. doi:10.1016/0094-114X(94)90025-6

    Article  Google Scholar 

  16. Innocenti C, Parenti-Castelli V (1993) Echelon form solution of direct kinematics for the general fully-parallel spherical wrist. Mech Mach Theory 28:553–561. doi:10.1016/0094-114X(93)90035-T

    Article  Google Scholar 

  17. Lee JJ, Chang S-L (1992) On the kinematics of the UPS wrist for real time control. In: Proceedings of the 22nd ASME biennial mechanisms conference and robotics, spatial mechanisms and mechanical systems, Scottsdale, USA, pp 305–312

    Google Scholar 

  18. Kong X, Gosselin CM (2004) Type synthesis of 3-DOF spherical parallel manipulators based on screw theory. J Mech Des 126:101–108. doi:10.1115/1.1637655

    Article  Google Scholar 

  19. Kong X, Gosselin CM (2004) Type synthesis of three-degree-of-freedom spherical parallel manipulators. Int J Robotics Res 23:237–245. doi:10.1177/0278364904041562

    Article  Google Scholar 

  20. Karouia M, Hervé JM (2002) A family of novel orientational 3-DOF Parallel Robots. In: Proceedings of the 14th RoManSy, Udine, pp 359–368

    Google Scholar 

  21. Karouia M, Hervé JM (2000) A three-Dof tripod for generating spherical rotation. In: Lenarcic J, Stanisic MM (eds) Advances robot kinematics. Kluwer, Dordrecht

    Google Scholar 

  22. Karouia M, Hervé JM (2006) Non-overconstrained 3-DOF spherical parallel manipulators of type: 3-RCC, 3-CCR, 3-CRC. Robotica 24:85–94. doi:10.1017/S0263574705001827

    Article  Google Scholar 

  23. Fang Y, Tsai L-W (2004) Structure synthesis of a class of 3-DOF rotational parallel manipulators. IEEE Trans Robotics and Autom 20:117–121. doi:10.1109/TRA.2003.819597

    Article  Google Scholar 

  24. Di Gregorio R (2001) Kinematics of a new spherical parallel manipulator with three equal legs: the 3-URC wrist. J. Robotic Syst 18:213–219. doi:10.1002/rob.1017

    Article  MATH  Google Scholar 

  25. Di Gregorio R (2001) A new parallel wrist using only revolute pairs: the 3-RUU wrist. Robotica 19:305–309. doi:10.1017/S0263574700003192

    Google Scholar 

  26. Di Gregorio R (2004) The 3-RRS wrist: a new, simple and non-overconstrained spherical parallel manipulator. J Mech Des 126:850–855. doi:10.1115/1.1767819

    Article  Google Scholar 

  27. Di Gregorio R (2004) Kinematics of the 3-RSR wrist. IEEE Trans Robotics 20:750–754. doi:10.1109/TRO.2004.829451

    Article  Google Scholar 

  28. Huda S, Takeda Y (2007) Kinematic analysis and synthesis of a 3-URU pure rotational parallel mechanism with respect to singularity and workspace. J Adv Mech Des Syst Manuf 1:81–92. doi:10.1299/jamdsm.1.81

    Google Scholar 

  29. Yi B-J, Chung GB, Na HY, Kim WK, Suh IH (2003) Design and experiment of a 3-DOF parallel micromechanism utilizing flexure hinges. IEEE Trans Robotics 19:604–612. doi:10.1109/TRA.2003.814511

    Article  Google Scholar 

  30. Lusk CP, Howell LL (2008) Components, building blocks, and demonstrations of spherical mechanisms in microelectromechanical systems. J Mech Des 130(034503–1):4. doi:10.1115/1.2829914

    Google Scholar 

  31. Lusk CP, Howell LL (2008) Spherical bistable micromechanism. J Mech Des 130(045001–1):6. doi:10.1115/1.2885079

    Google Scholar 

  32. Callegari M, Cammarata A, Gabrielli A, Ruggiu M, Sinatra R (2009) Analysis and design of a spherical micromechanism with flexure hinges. J Mech Des 131:051003–051013. doi:10.1115/1.3086796

    Article  Google Scholar 

  33. Palpacelli M-C, Palmieri G, Callegari M (2012) A redundantly actuated 2-dof mini pointing device. ASME J Mechanisms and Robotics 4(3):031012. ISSN: 1942-4302, eISSN: 1942-4310, doi:10.1115/1.4006833

  34. Fontana M, Frisoli A, Salsedo F, Bergamasco M (2006) Kinematics of a new 2-DoF wrist with high angulation capability. Proc IEEE Int Conf Robot Autom, Orlando. doi:10.1109/ROBOT.2006.1641924

    Google Scholar 

  35. Carricato M, Parenti-Castelli V (2004) A novel fully decoupled two-degrees-of-freedom parallel wrist. Int J Robotics Res 23:661–667. doi:10.1177/0278364904044077

    Article  Google Scholar 

  36. Callegari M, Marzetti P, Olivieri B (2004) Kinematics of a parallel mechanism for the generation of spherical motions. In: Lenarcic J, Galletti CU (eds) Advances in robot kinematics. Kluwer, Dordrecht

    Google Scholar 

  37. Zlatanov D, Bonev IA, Gosselin CM (2002) Constraint singularities of parallel mechanisms. In: Proceedings of the IEEE international conference on robotics and automation, Washington, USA, pp 496–502

    Google Scholar 

  38. Bonev IA, Zlatanov D (2001) The mystery of the singular SNU translational parallel robot. Available online at http://www.parallemic.org/Reviews/Review004.html

  39. Carbonari L (2012) Extended analysis of the 3-CPU reconfigurable class of parallel robotic manipulators, Ph.D. thesis, Polytechnic University of Marche, Ancona

    Google Scholar 

  40. Callegari M, Palpacelli M-C (2008) Prototype design of a translating parallel robot. Meccanica 43:133–151. doi:10.1007/s11012-008-9116-8

    Article  MathSciNet  MATH  Google Scholar 

  41. Yoshikawa T (1985) Dynamic manipulability of robot manipulators. J Robotic Syst 2:113–124

    Google Scholar 

  42. Yoshikawa T (2000) Erratum to dynamic manipulability of robot manipulators. J Robotic Syst 17:449. doi:10.1002/1097-4563(200008)17:8<449:AID-ROB5>3.0.CO;2-M

    Article  Google Scholar 

  43. Di Gregorio R, Parenti-Castelli V (2002) Dynamic performance indices for 3-DOF parallel manipulators. In: Lenarcic J, Thomas F (eds) Advances in robot kinematics. Kluwer, Dordrecht

    Google Scholar 

  44. Carbonari L, Bruzzone L, Callegari M (2011) Impedance control of a spherical parallel platform. Int J Intell Mechatron Robot 1:40–60. doi:10.4018/ijimr.2011010103

    Article  Google Scholar 

  45. Bruzzone L, Callegari M (2010) Application of the rotation matrix natural invariants to impedance control of purely rotational parallel robots. Adv Mech Eng. doi:10.1155/2010/284976

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Callegari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Callegari, M., Carbonari, L., Palmieri, G., Palpacelli, MC. (2013). Parallel Wrists for Enhancing Grasping Performance. In: Carbone, G. (eds) Grasping in Robotics. Mechanisms and Machine Science, vol 10. Springer, London. https://doi.org/10.1007/978-1-4471-4664-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4664-3_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4663-6

  • Online ISBN: 978-1-4471-4664-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics