Skip to main content

Path Planning for Grasping Tasks

  • Chapter
  • First Online:
Book cover Grasping in Robotics

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 10))

Abstract

In this chapter a novel algorithm is formulated and implemented for optimum path planning of parallel manipulators. A multiobjective optimization problem has been formulated for an efficient numerical solution procedure through kinematic and dynamic features of manipulator operation. Computational economy has been obtained by properly using a genetic algorithm to search an optimal solution for path spline functions. Numerical characteristics of the numerical solving procedure have been outlined through a numerical example applied to CaPaMan, Cassino Parallel Manipulator, both for path planning and for design purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angeles J (1997) Fundamentals of robotic mechanical systems: theory, methods, and algorithms. Springer, New York

    MATH  Google Scholar 

  2. Biagiotti L, Melchiorri C (2008) Trajectory planning for automatic machines and robots. Springer, Berlin

    Google Scholar 

  3. Carvalho JCM, Ceccarelli M (1999) A dynamic analysis for cassino parallel manipulator. In: Proceedings of 10th IFToMM world congress, Oulu, vol 3, pp 1202–1207

    Google Scholar 

  4. Carvalho JCM, Ceccarelli M (2001a) The inverse dynamics of cassino parallel manipulator. In: Proceedings of 2nd workshop on computational kinematics—CK 2001, Seoul, pp 301–308

    Google Scholar 

  5. Carvalho JCM, Ceccarelli M (2001) A closed form formulation for the inverse dynamics of cassino parallel manipulator. J Multibody Syst Dyn 5(2):185–210

    Article  MATH  Google Scholar 

  6. Ceccarelli M (1997) A new 3 dof spatial parallel mechanism. Mech Mach Theory 32(8):895–902

    Article  MathSciNet  Google Scholar 

  7. Chen YC (1991) Solving robot trajectory planning problems with uniform Cubic B-Splines. Optim Control Appl Methods 12:247–262

    Article  Google Scholar 

  8. Choi YK, Park JH, Kim HS, Kim JH (2000) Optimal trajectory planning and sliding mode control for robots using evolution strategy. Int J Robotica 18(4):423–428

    Google Scholar 

  9. Clavel R (1988) DELTA: a fast robot with parallel geometry. In: Proceedings of 18th international symposium on industrial robots, Lausanne, Swiss, pp 91–100

    Google Scholar 

  10. De Boor C (2000) A pratical guide to spline. Springer, New York

    Google Scholar 

  11. Di Gregorio R (2002) A new family of spherical parallel manipulators. Int J Robotica 20(4):353–358

    Google Scholar 

  12. Eschenauer H, Koski J, Osyczka A (1990) Multicriteria Design Optimization. Springer, Berlin

    Book  MATH  Google Scholar 

  13. Ferreira WRB, Carvalho JCM (2011) Robot trajectory planning using cubic B-spline in joint space. In: Proceedings of the international symposium on multibody systems and mechatronics—MuSMe2011, Universitat Politecnica de Valencia, Spain

    Google Scholar 

  14. Foley JD, Van-Dam A, Feiner SK, Hughes JF (1990) Computer graphics: Principles and practice, 2nd edn. Addison-Wesley, Massachusetts

    Google Scholar 

  15. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning reading. Addison-Wesley, Massachusetts

    Google Scholar 

  16. Gosselin C, Angeles J (1988) The optimum kinematic design of a planar three-degree-of-freedom parallel manipulator. ASME J Mech Transm Autom Des 110:35–41

    Article  Google Scholar 

  17. Haupt RL, Haupt SE (1998) Practical genetic algorithm. Wiley, New York, pp 25–48

    Google Scholar 

  18. Hearn D, Baker MP (1994) Computer graphics. Prentice Hall, New Jersey p 07632

    MATH  Google Scholar 

  19. Holland JH (1975) Adaptation in natural and artificial systems. MIT Press, Illinois Genetic Algorithm Laboratory. IlliGAL, University of Illinois at Urbana-Champaign, pp 11–147

    Google Scholar 

  20. Houck CR, Joinez JA, Kay MG (1995) A genetic algorithms for function optimization: a Matlab Implementation. In: NCSU-IE technical report, University of North Caroline, USA

    Google Scholar 

  21. Johnson CG, Marsh D (1999) Modelling robot manipulators with multivariate B-splines. Int J Robotica 17(3):239–247

    Google Scholar 

  22. Karouia M, Hervé JM (2006) Non-overconstrained 3-dof spherical parallel manipulators of type: 3-RCC, 3-CCR, 3-CRC. Int J Robotica 24(1):85–94

    Google Scholar 

  23. Kosinska A, Galicki M, Kedzior K (2003) Design of parameters of parallel manipulators for a specified workspace. Int J Robotica 21(5):575–579

    Google Scholar 

  24. Lin CS, Chang PR, Luh JYS (1983) Formulation and optimization of cubic polynomial joint trajectories for industrial robots. IEEE Trans Automat Contr 28:1066–1073

    Article  MATH  Google Scholar 

  25. Merlet JP (2005) Parallel robots. Springer, Dordrecht

    Google Scholar 

  26. Merlet JP, Gosselin C (1991) Nouvelle architecture pour manipulateur parallèle a six degrées de liberté. Mech Mach Theory 26(1):77–90

    Article  MathSciNet  Google Scholar 

  27. Miller K (1995) Experimental verification of modelling of delta robot dynamics by direct application of hamilton’s principle. In: Proceedings of IEEE international conference on robotics and automation—ICRA’95, Nagoya, pp 532–537

    Google Scholar 

  28. Parenti-Castelli V, Di Gregorio R, Bubani F (1999) Workspace and optimal design of a pure translation parallel manipulator. In: Proceedings of XIV national congress on applied mechanics—AIMETA ‘99, Como, paper no. 17

    Google Scholar 

  29. Park FC, Kim J, Bobrow JE (1999) Algorithms for dynamics—based robot motion optimization. In: Proceedings of 10th world congress on the theory of machines and mechanics—IFToMM, Oulu, pp. 1216–1221

    Google Scholar 

  30. Oliveira LS, Saramago SFP (2010). Multiobjective optimization techniques applied to engineering problems. J Brazilian Soc Mech Sci Eng XXXII:94–104

    Google Scholar 

  31. Oliveira PJ, Saramago SFP, Carvalho JCM, Carbone G, Ceccarelli M (2007) An optimum path planning for cassino parallel manipulator by using inverse dynamics. Robotica (Cambridge) 26:229–239

    Google Scholar 

  32. Osyczka A, (1981) An approach to multicriterion optimization for structural design. In: Proceedings of international symposium on optimum structural design, University of Arizona

    Google Scholar 

  33. Ottaviano E, Gosselin CM, Ceccarelli M (2001) Singularity analysis of CaPaMan: a three-degree of freedom spatial parallel manipulator. In: IEEE International Conference on Robotics and Automation ICRA2001, Seoul, pp 1295–1300

    Google Scholar 

  34. Piegl L, Tiller W (1997) The nurbs book. Springer, New York

    Book  Google Scholar 

  35. Rogers DF (2001) An introduction to nurbs. Morgan Kaufmann Publishers, San Diego

    Google Scholar 

  36. Santos RR, Saramago SFP, Steffen V Jr (2008) Robot path planning in a constrained workspace by using optimal control techniques. Multibody Sys Dyn 19:159–177

    Google Scholar 

  37. Santos RR., Saramago SFP, Steffen V Jr (2010) Optimal task placement of a serial robot manipulator for manipulability and mechanical power optimization. Intell Inf Manag 2:512–525

    Google Scholar 

  38. Saramago SFP, Steffen V Jr (2001) Trajectory modeling of robots manipulators in the presence of obstacles. Kluwer Acad J Optim Theory Appl 110(1):17–34

    Article  MathSciNet  MATH  Google Scholar 

  39. Saramago SFP, Ceccarelli M (2002) An optimum robot path planning with payload constraints. Int J Robotica 20:395–404

    Google Scholar 

  40. Saramago SFP, Ceccarelli M (2004) Effect of some numerical parameters on a path planning of robots taking into account actuating energy. Mech Mach Theory 39(3):247–270

    Article  MATH  Google Scholar 

  41. Shin KG, Mckay ND (1986) A dynamic programming approach to trajectory planning of robotic manipulators. IEEE Trans Automat Contr 31(6):491–500

    Google Scholar 

  42. Stewart D (1965) A platform with six degrees of freedom. Proc Inst Mech Eng Lond, 180:371–386

    Google Scholar 

  43. Tsai LW, Stamper R (1996) A parallel manipulator with only translational degrees of freedom. In: Proceedings of the ASME DETC, Irvine, Paper DETC1996/MECH-1152

    Google Scholar 

  44. Wang J, Gosselin CM (1997) Kinematic analysis and singularity representation of spatial five-degree-of-freedom parallel mechanisms. J Robotics Syst 14(2):851–869

    Article  MATH  Google Scholar 

  45. Wolovich WA (1985) Robotics: basic analysis and design. Holt, Rinehart and Winston, New York

    Google Scholar 

  46. Yang X, Chen Z (2005). A new high precision fitting approach for NURBS tool paths generation. In: Proceedings of ASME international design engineering technical conference and computers and information in engineering, pp 255–262

    Google Scholar 

  47. Zeghloud S, Blanchard B, Pamanes JA (1994) Optimization of kinematics performances of manipulators under specified task conditions. In: Proceedings of 10th CISM-IFToMM symposium—Romansy, vol 10, Gdansk, pp 247–252

    Google Scholar 

  48. Zhao J, Bai SX (1999) Load distribuition and joint trajectory planning of coordinated manipulation for two redundant robots. Mech Mach Theory 34:1155–1170

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Carlos Mendes Carvalho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Carvalho, J.C.M., Saramago, S.F.P. (2013). Path Planning for Grasping Tasks . In: Carbone, G. (eds) Grasping in Robotics. Mechanisms and Machine Science, vol 10. Springer, London. https://doi.org/10.1007/978-1-4471-4664-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4664-3_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4663-6

  • Online ISBN: 978-1-4471-4664-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics