Skip to main content

Abstract

In this chapter, we provide an introduction to spectro-polarimetric imaging. We show that the radiance transmitted through a linear polariser varies as a sinusoidal function of the polariser angle, i.e. the transmitted radiance sinusoid curves. We review different techniques to decompose polarisation images into their reflection compoents including the unpolarised intensity, the phase and the degree of linear polarisation. We then analyse the underlying physical process of polarisation upon the penetration, scattering, refraction and reflection of light from materials. Furthermore, we relate the polarisation components to the Fresnel reflection ratio resulting from specular reflection and the Fresnel transmission ratio resulting from diffuse reflection. Finally, we present a polarimetric reflection model for rough surfaces under spatially varying illumination. This model extends the specular component of the Torrance–Sparrow model to account for light polarisation upon off-specular reflection from rough surfaces. As a result, the specular polarimetric components can be expressed as functions of the perpendicular and parallel Fresnel reflection coefficients and the illuminant spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkinson, G., & Hancock, E. R. (2005a). Multi-view surface reconstruction using polarization. In International conference on computer vision (pp. 309–316).

    Google Scholar 

  • Atkinson, G., & Hancock, E. R. (2005b). Recovery of surface height using polarization from two views. In CAIP (pp. 162–170).

    Google Scholar 

  • Atkinson, G. A., & Hancock, E. R. (2006). Recovery of surface orientation from diffuse polarization. IEEE Transactions on Image Processing, 15(6), 1653–1664.

    Article  Google Scholar 

  • Atkinson, G. A., & Hancock, E. R. (2007). Shape estimation using polarization and shading from two views. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(11), 2001–2017.

    Article  Google Scholar 

  • Beckmann, P., & Spizzichino, A. (1963). The scattering of electromagnetic waves from rough surfaces. New York: Pergamon.

    MATH  Google Scholar 

  • Born, M., & Wolf, E. (1999). Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (7th ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Drbohlav, O., & Sára, R. (2001). Unambigous determination of shape from photometric stereo with unknown light sources. In International conference on computer vision (pp. 581–586).

    Google Scholar 

  • Goudail, F., Terrier, P., Takakura, Y., Bigué, L., Galland, F., & DeVlaminck, V. (2004). Target detection with a liquid-crystal-based passive stokes polarimeter. Applied Optics, 43(2), 274–282.

    Article  Google Scholar 

  • Hall, J. S. (1951). Some polarization measurements in astronomy. Journal of the Optical Society of America, 41(12), 963–966.

    Article  Google Scholar 

  • Hawryshyn, C. W. (2000). Ultraviolet polarization vision in fishes: possible mechanisms for coding e-vector. Philosophical Transactions: Biological Sciences, 355(1401), 1187–1190.

    Article  Google Scholar 

  • Hecht, E. (2002). Optics (4th ed.). Reading: Addison-Wesley.

    Google Scholar 

  • Huynh, C. P., Robles-Kelly, A., & Hancock, E. R. (2010). Shape and refractive index recovery from single-view polarisation images. In IEEE conference on computer vision and pattern recognition.

    Google Scholar 

  • Kasarova, S. N., Sultanova, N. G., Ivanov, C. D., & Nikolo, I. D. (2007). Analysis of the dispersion of optical plastic materials. Optical Materials, 29, 1481–1490.

    Article  Google Scholar 

  • Mandel, L., & Wolf, E. (1995). Optical coherence and quantum optics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Marquardt, D. (1963). An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics, 11, 431–441.

    Article  MathSciNet  MATH  Google Scholar 

  • Marshall, N. J., Land, M. F., King, C. A., & Cronin, T. W. (1991). The compound eyes of Mantis Shrimps (Crustacea, Hoplocarida, Stomatopoda). I. Compound eye structure: the detection of polarized light. Philosophical Transactions: Biological Sciences, 334(1269), 33–56.

    Article  Google Scholar 

  • Miyazaki, D., Kagesawa, M., & Ikeuchi, K. (2004). Transparent surface modeling from a pair of polarization images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(1), 73–82.

    Article  Google Scholar 

  • Nayar, S. K., Fang, X. q. S., & Boult, T. (1997). Separation of reflection components using color and polarization. International Journal of Computer Vision, 21(3), 163–186.

    Article  Google Scholar 

  • Novak, C., & Shafer, S. (1992). Anatomy of a color histogram. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 599–605).

    Google Scholar 

  • Oren, M., & Nayar, S. K. (1995). Generalization of the Lambertian model and implications for machine vision. International Journal of Computer Vision, 14(3), 227–251.

    Article  Google Scholar 

  • Rahmann, S., & Canterakis, N. (2001). Reconstruction of specular surfaces using polarization imaging. In IEEE conference on computer vision and pattern recognition (Vol. 1, pp. 149–155).

    Google Scholar 

  • Sadjadi, F. A., & Chun, C. S. L. (2004). Remote sensing using passive infrared stokes parameters. Optical Engineering, 43, 2283–2291.

    Article  Google Scholar 

  • Sato, Y., & Ikeuchi, K. (1994). Temporal-color space analysis of reflection. Journal of the Optical Society of America A, 11(11), 2990–3002.

    Article  Google Scholar 

  • Shafer, S. A. (1985). Using color to separate reflection components. Color Research and Application, 10(4), 210–218.

    Article  Google Scholar 

  • Torrance, K., & Sparrow, E. (1967). Theory for off-specular reflection from roughened surfaces. Journal of the Optical Society of America, 57(9), 1105–1112.

    Article  Google Scholar 

  • Torrance, K. E., Sparrow, E. M., & Birkebak, R. C. (1966). Polarization, directional distribution, and off-specular peak phenomena in light reflected from roughened surfaces. Journal of the Optical Society of America, 56, 916–924.

    Article  Google Scholar 

  • Umeyama, S., & Godin, G. (2004). Separation of diffuse and specular components of surface reflection by use of polarization and statistical analysis of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(5), 639–647.

    Article  Google Scholar 

  • Wolff, L. B. (1989). Using polarization to separate reflection components. In Computer vision and pattern recognition (pp. 363–369).

    Google Scholar 

  • Wolff, L. B. (1994). Diffuse-reflectance model for smooth dielectric surfaces (pp. 2956–2968).

    Google Scholar 

  • Wolff, L. B. (1997). Polarization vision: a new sensory approach to image understanding. Image and Vision Computing, 15(2), 81–93.

    Article  MathSciNet  Google Scholar 

  • Wolff, L. B., & Andreou, A. G. (1995). Polarization camera sensors. Image and Vision Computing, 13(6), 497–510.

    Article  Google Scholar 

  • Wolff, L. B., & Boult, T. E. (1989). Polarization/radiometric based material classification. In Computer vision and pattern recognition (pp. 387–395).

    Google Scholar 

  • Wolff, L. B., & Boult, T. E. (1991). Constraining object features using a polarization reflectance model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(7), 635–657.

    Article  Google Scholar 

  • Wolff, L. B., Mancini, T. A., Pouliquen, P., & Andreou, A. G. (1997). Liquid crystal polarization camera. IEEE Transactions on Robotics and Automation, 13(2), 195–203.

    Article  Google Scholar 

  • Wyszecki, G., & Stiles, W. S. (2000). Color science: concepts and methods, quantitative data and formulae. New York: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Robles-Kelly, A., Huynh, C.P. (2013). Polarisation of Light. In: Imaging Spectroscopy for Scene Analysis. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-4652-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4652-0_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4651-3

  • Online ISBN: 978-1-4471-4652-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics